All Title Author
Keywords Abstract


Global Convergence Property with Inexact Line Search for a New Hybrid Conjugate Gradient Method

DOI: 10.4236/oalib.1106048, PP. 1-14

Subject Areas: Mathematical Analysis

Keywords: Unconstrained Optimization, Hybrid, Conjugate Gradient

Full-Text   Cite this paper   Add to My Lib

Abstract

In this study, we derive a new scale parameter φ for the CG method, for solving large scale unconstrained optimization algorithms. The new scale parameter φ satisfies the sufficient descent condition, global convergence analysis proved under Strong Wolfe line search conditions. Our numerical results show that the proposed method is effective and robust against some known algorithms.

Cite this paper

Al-Namat, F. N. and Al-Naemi, G. M. (2020). Global Convergence Property with Inexact Line Search for a New Hybrid Conjugate Gradient Method. Open Access Library Journal, 7, e6048. doi: http://dx.doi.org/10.4236/oalib.1106048.

References

[1]  Liu, A.J. and Li, S. (2014) New Hybrid Conjugate Gradient Method for Unconstrained Optimization. Applied Mathematics and Computation, 245, 36-43.
https://www.sciencedirect.com/science/article/abs/pii/S0096300314010637
https://doi.org/10.1016/j.amc.2014.07.096
[2]  Salleh, Z. and Alhawarat, A. (2016) An Efficient Modification of the Hes-tenes-Stiefel Nonlinear Conjugate Gradient Method with Restart Property. Journal of Inequalities and Applications, 2016, Article No. 110.
https://link.springer.com/article/10.1186/s13660-016-1049-5
https://doi.org/10.1186/s13660-016-1049-5
[3]  Wolfe, P. (1969) Convergence Condition for Ascent Methods. SIAM Review, 11, 226-235. https://doi.org/10.1137/1011036
[4]  Wolfe, P. (1971) Convergence Conditions for Ascent Methods II: Some Corrections. SIAM Review, 13, 185-188. https://doi.org/10.1137/1013035
[5]  Alhawarat, A., Mamat, M., Rivaie, M. and Salleh, Z. (2015) An Efficient Hybrid Conjugate Gradient Method with the Strong Wolfe-Powell Line Search. Mathematical Problems in Engineering, 2015, Article ID: 103517.
https://www.hindawi.com/journals/mpe/2015/103517
https://doi.org/10.1155/2015/103517
[6]  Hestenes, M.R. and Stiefel, E. (1952) Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the National Bureau of Standards, 49, 409-436. https://nvlpubs.nist.gov/nistpubs/jres/049/jresv49n6p409_A1b.pdf
https://doi.org/10.6028/jres.049.044
[7]  Fletcher, R. and Reeves, C. (1964) Function Minimization by Conjugate Gradients. The Computer Journal, 7, 149-154. https://doi.org/10.1093/comjnl/7.2.149
https://academic.oup.com/comjnl/article/7/2/149/335311
[8]  Polak, E. and Ribie’re, G. (1969) Note sur la convergence de me’thodes de directions conjugue’s. Revue Francsis d’Infermatique et de recherché Operationnelle, 3, 35-43.
http://www.numdam.org/item?id=M2AN_1969__3_1_35_0
https://doi.org/10.1051/m2an/196903R100351
[9]  Polyak, B.T. (1969) The Conjugate Gradient Method in Extreme Problems. USSR Computational Mathematics and Mathematical Physics, 9, 94-112.
https://www.researchgate.net/publication/222365587
https://doi.org/10.1016/0041-5553(69)90035-4
[10]  Fletcher, R. (1987) Practical Methods of Optimization. 2nd Edition, John Wiley & Sons, Inc., Hoboken. https://www.wiley.com/en-ba
[11]  Liu, D. and Story, C. (1991) Efficient Generalized Conjugate Gradient Algorithms. Part 1: Theory. Journal of Optimization Theory and Applications, 69, 129-137.
https://link.springer.com/article/10.1007/BF00940464
https://doi.org/10.1007/BF00940464
[12]  Dai, Y.H. and Yuan, Y. (1999) A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property. SIAM Journal on Optimization, 10, 177-182.
https://doi.org/10.1137/S1052623497318992
[13]  Al-Naemi, Gh.M. and Hamed, E.T. (2013) New Conjugate Method with Wolfe Type Line Searches for Nonlinear Programming. Australian Journal of Basic and Applied Sciences, 7, 622-632. https://www.researchgate.net/publication/330686295
[14]  Andrei, N. (2010) Acceleration Hybrid Conjugate Gradient Algorithm with Modified Secant Condition for Unconstrained Optimization. Numerical Algorithms, 54, 23-46. https://link.springer.com/article/10.1007/s11075-009-9321-0
https://doi.org/10.1007/s11075-009-9321-0
[15]  Andrei, N. (2008) Another Nonlinear Conjugate Gradient Algorithm for Unconstrained Optimization. Optimization Methods and Software, 24, 89-104.
https://www.tandfonline.com/doi/abs/10.1080/10556780802393326
https://doi.org/10.1007/s11075-007-9152-9
[16]  Yan, H., Chen, L. and Jiao, B. (2009) HS-LS-CD Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization. 2nd International Workshop on Computer Science and Engineering, Vol. 1, Qingdao, 28-30 October 2009, 264-268.
https://ieeexplore.ieee.org/document/5403315
https://doi.org/10.1109/WCSE.2009.667
[17]  Li, S. and Sun, Z.B. (2010) A New Hybrid Conjugate Gradient Method and Its Global Convergence for Unconstrained Optimization. International Journal of Pure and Applied Mathematics, 63, 84-93.
https://ijpam.eu/contents/2010-63-3/4/index.html
[18]  Djordjevic, S.S. (2019) New Hybrid Conjugate Gradient Method as a Convex Combination of LS and CD Methods. Filomat, 31, 1813-1825.
https://doi.org/10.2298/FIL1706813D
[19]  Djordjevic, S.S. (2018) New Hybrid Conjugate Gradient Method as a Convex Combination of HS and FR Conjugate Gradient Methods. Journal of Applied Mathematics and Computation, 2, 366-378. https://doi.org/10.26855/jamc.2018.09.002
https://www.researchgate.net/publication/328125868
[20]  Djordjevi?, S.S. (2019) New Hybrid Conjugate Gradient Method as a Convex Combination of LS and FR Conjugate Gradient Methods. Acta Mathematica Scientia, 39, 214-228.
[21]  Zheng, X.Y., Dong, X.L., Shi, J.R. and Yang, W. (2019) Further Comment on Another Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization by Andrei. Numerical Algorithm, 1-6. https://doi.org/10.1007/s11075-019-00771-1
[22]  Abdullahi, I. and Ahmad, R. (2016) Global Convergence Analysis of a Nonlinear Conjugate Gradient Method for Unconstrained Optimization Problems. Indian Journal of Science and Technology, 9, 1-9.
http://www.indjst.org/index.php/indjst/article/view/90175/74779
https://doi.org/10.17485/ijst/2016/v9i41/90175
[23]  Livieris, I.E., Tampakas, V. and Pintelas, P. (2018) A Descent Hybrid Conjugate Gradient Method Based on the Memoryless BFGS Update. Numerical Algorithms, 79, 1169-1185. https://link.springer.com/article/10.1007/s11075-018-0479-1
https://doi.org/10.1007/s11075-018-0479-1
[24]  Mandara, A.V., Mamat, M., Waziri, M.Y., Mohamed, M.A. and Yakubu, U.A. (2018) A New Conjugate Gradient Coefficient with Exact Line Search for Unconstrained Optimization. Far East Journal of Mathematical Sciences, 105, 193-206.
https://www.researchgate.net/publication/329522075
https://doi.org/10.17654/MS105020193
[25]  Liu, J.K. and Li, S.J. (2014) New Hybrid Conjugate Gradient Method for Unconstrained Optimization. Applied Mathematics and Computation, 245, 36-43.
https://doi.org/10.1016/j.amc.2014.07.096
https://www.sciencedirect.com/science/article/abs/pii/S0096300314010637
[26]  Yunus, R.B., Mamat, M. and Abashar, A. (2018) Comparative Study of Some New Conjugate Gradient Methods. UniSZA Research Conference (URC 2015), Kuala Terengganu, 14-16 April 2015, 616-621.
https://www.researchgate.net/publication/326301618
[27]  Al-Naemi, Gh.M. and Ahmed, H.I. (2013) Modified Nonlinear Conjugate Gradient Algorithms with Application in Neural Networks. LAP Lambert Academic Publishing, Saarbrucken.
[28]  Andrei, N. (2008) An Unconstrained Optimization Test Functions Collection. Advanced Modeling and Optimization, 10, 147-161.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.665.3152&rep=rep1&type=pdf
[29]  Andrei, N. (2014) Test Functions for Unconstrained Global Optimization. 3-5.
[30]  Bongartz, I., Conn, A.R., Gould, N. and Toint, P.L. (1995) CUTE: Constrained and Unconstrained Testing Environment. ACM Transactions on Mathematical Software, 21, 123-160. https://doi.org/10.1145/200979.201043

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal