All Title Author
Keywords Abstract


Electronic Transport Mechanisms in PVDF/ZnO Nanocomposite Films

DOI: 10.4236/oalib.1105707, PP. 1-9

Subject Areas: Nanometer Materials

Keywords: PVDF, Nano-Composites, ZnO, DC Conduction, Reduced Graphene Oxide

Full-Text   Cite this paper   Add to My Lib

Abstract

In this report, we present fundamental DC conduction mechanisms of pol-yvinyl difluoride/nano-zinc oxide (PVDF/ZnO) composite films. Nano-composite films of zinc oxide in the PVDF matrix have been fabricated via a solution casting method. Space charge limited conduction (SCLC) was found to be a prominent conduction mechanism in higher voltage region and Schottky- Richardson mechanism was a possible conduction mechanism in a higher temperature region. DC activation energy for composites was found to decrease with increasing concentration of ZnO nanoparticles and reduced graphene oxide (RGO) with 1.41 eV (9.9 wt%), 1.04 eV (33.33 wt%), and 0.95 eV (33.33 wt% RGO), respectively.

Cite this paper

Bohara, B. B. , Batra, A. K. and Jr., J. R. C. (2019). Electronic Transport Mechanisms in PVDF/ZnO Nanocomposite Films. Open Access Library Journal, 6, e5707. doi: http://dx.doi.org/10.4236/oalib.1105707.

References

[1]  Nalwa, H.S. (1995) Ferroelectric Polymers. Marcel Dekker, New York.
https://doi.org/10.1201/9781482295450
[2]  Nayak, H.C. (2013) Study of Conduction Mechanism in Poly(9-Vinylcarbozole) Oure and Doped with Ferrocene. International Journal of Scientific and Engineering Research, 4, 1228-1234.
[3]  Martin, R. and Bhuiyan, A.H. (2011) Electrical Transport Mechanism in Plasma Polymerized 2, 6, Diethylaniline Thin Films. Thin Solid Films, 51, 3462-3467.
https://doi.org/10.1016/j.tsf.2010.12.240
[4]  Abd-El Kader, F.H., Osman, W.H. and Hafez, R.S. (2013) DC Conduction Mechanism and Dielectric Properties of Poly(methacrylate)/Poly(vinyl acetate) Blends Doped and Undoped with Malachite Green. Physica B, 408, 140-150.
https://doi.org/10.1016/j.physb.2012.09.027
[5]  Deepak, K., Roy, A., An-janeyulu, P., Kandaiah, S. and Pinjare, S.L. (2017) Charge Transport Mechanism in p-Type Copper Ion Containing Triazine Thiolate Metallopolymer Thin Film Devices. Journal of Applied Physics, 122, Article ID: 164504.
https://doi.org/10.1063/1.4993983
[6]  Batra, A.K., Aggarwal, M.D., Edwards, M.E. and Bhalla, A. (2008) Present Status of Polymer: Ceramic Composites for Pyroelectric Infrared Detectors. Ferroelectrics, 366, 84-121. https://doi.org/10.1080/00150190802363207
[7]  Paik, H., Choi, Y., Hong, S. and No, K. (2015) Effect of Ag Nanoparticle Concentration on Electrical and Ferroelectric Properties of Ag-P(VDF-TRFE) Composite Films. Scientific Reports, 5, Article No. 13209. https://doi.org/10.1038/srep13209
[8]  Batra, A.K. and Motasim, A. (2017) Power Harvesting via Smart Materials. SPIE Press, Bellingham. https://doi.org/10.1117/3.2268643
[9]  Ram, R., Rahaman, M. and Khastgir, D. (2015) Electrical Properties of PVDF/Multi-Walled Carbon Nanotubes (MWCNT) Semi-Transparent Composites: Modelling of DC Conductivity. Composites Part A: Ap-plied Science and Manufacturing, 69, 30-39. https://doi.org/10.1016/j.compositesa.2014.11.003
[10]  Aggarwal, M.D., Batra, A.K., Guggilla, P., Edwards, M.E., Penn, B. and Currie, J.R. (2010) Pyroelectric Materials for Uncooled Infrared Detectors. NASA TM, 251-258.
[11]  Puertolas, J.A., Garcia-Garcia, J.F.F., Pascul, J. and Gonzalez-Dominguez, J.M. (2017) Dielectric Behavior and Electrical Conductivity of PVDF Filled with Functionalized Single-Walled Carbon Nanotubes. Composites Science and Technology, 152, 263-274. https://doi.org/10.1016/j.compscitech.2017.09.016
[12]  Batra, A.K. and Aggarwal, M.D. (2013) Pyroelectric Materials. SPIE Press, Bellingham.
[13]  ??üt, E., Sinan Y?r-dem, O., Mencelo?lu, Y.Z. and Papila, M. (2007) Poly(vinylidene fluoride)/Zinc Oxide Smart Composite Material, Behavior and Mechanics of Multifunctional and Composite Materials 2007. Proceedings of SPIE, Vol. 6526, 65260Q.
https://doi.org/10.1117/12.717703
[14]  Du, H., Liang, W., Gao, M., Zhang, Y., Chen, C. and Lin, Y. (2015) Leakage Properties of BaTiO3 Thin Films on Polycrystalline Ni Substrates Grown by Polymer-Assisted Deposition with Two-Step Annealing. Journal of Alloys and Compounds, 642, 166-171. https://doi.org/10.1016/j.jallcom.2015.04.025
[15]  Kamal, M.M. and Bhuiyan, A.H. (2014) Direct Current Electrical Conduction Mechanism in Plasma Polymerized Pyrrole Thin Films. Journal of Modern Science and Technology, 2, 1-9.
[16]  Yang, B.L., Lai, P.T. and Wong, H. (2004) Current Conduction Mechanism in Thin Gate Dielectrics Microelectron. Reliability, 44, 709-718.
https://doi.org/10.1016/j.microrel.2004.01.013
[17]  Batra, A., Bohara, B., Mills, J., Wright, R. and Kenney, B. (2017) Mechanisms of DC Conduction in Smart PMN-PT/Paint Nanocomposite Films. Journal of Materials Science: Materials in Elec-tronics, 28, 13336-13336.
https://doi.org/10.1007/s10854-017-7170-5
[18]  El Tayyan, A.A. and Khogali, A. (2004) DC Conduction in Fe3 Poly(9-vinylcarbazole) Doped Films. Chinese Journal of Physics, 42, 392-397.
[19]  Khissi, M., El Hasnaoui, M., Belattar, J., Graca, M.P.F., Achour, M.E. and Costa, L.C. (2011) DC Electrical Conductivity Studies on Copolymer/Carbon Black Composites. Journal of Materials and Environmental Science, 2, 281-284.

Full-Text


comments powered by Disqus