全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Structural and Dielectric Properties of Li0.5Bi0.5Ti0.8Zr0.2O3 Ceramics

DOI: 10.4236/oalib.1105563, PP. 1-6

Subject Areas: Condensed State Physics

Keywords: Ceramics, Perovskite Structure, Solid-State Reaction, X-Ray Diffraction

Full-Text   Cite this paper   Add to My Lib

Abstract

A polycrystalline orthorhombic compound of Li0.5Bi0.5Ti0.8Zr0.2O3 is synthesized by using a high temperature solid-state reaction technique at high temperature (i.e., at 900℃). The room temperature X-ray diffraction study assured the evolution of single-phase compound with orthorhombic structure. The dielectric analysis of Li0.5Bi0.5Ti0.95Zr0.05O3 explored over a broad frequency range (103 - 106 Hz) at various temperatures (33℃ - 500℃) displayed that the dielectric properties of the material are dependent on both frequency and temperature. Dielectric study reveals that the ferro to paraelectric phase transition of the studied compound is a temperature of 112℃. The nature of the variation of conductivity and value of activation energy in different regions, calculated from the temperature dependence of ac conductivity suggest that the conduction process is of mixed type (i.e., ionic–polaronic and space charge generated from the oxygen ion vacancies).

Cite this paper

Panda, D. , Mohanty, B. B. , Sahoo, P. S. and Choudhary, R. N. P. (2019). Structural and Dielectric Properties of Li0.5Bi0.5Ti0.8Zr0.2O3 Ceramics. Open Access Library Journal, 6, e5563. doi: http://dx.doi.org/10.4236/oalib.1105563.

References

[1]  Zhu, X.L., Chen, X.M., Liu, X.Q. and Yuan, Y. (2006) Dielectric Characteristics and Diffuse Ferroelectric Phase Transition in Sr4La2Ti4Nb6O30 Tungsten Bronze Ceramics. Journal of Materials Research, 21, 1787-1792.
https://doi.org/10.1557/jmr.2006.0201
[2]  Huang, C., Bhalla, A.S. and Guo, R. (2005) Measurement of Microwave Elec-tro-Optic Coefficient in Sr0.61Ba0.39Nb2O6 Crystal Fiber. Applied Physics Letters, 86, Article ID: 211907. https://doi.org/10.1063/1.1937997
[3]  Ramirez, M.O., Jaque, D., Bausa, L.E., Sole Garci, J. and Kaminskii, A.A. (2005) Near In-fraredand Visible Tunability from a Diode Pumped Nd Activated Strontium Barium Niobate Laser Crystal. Physical Review Letters, 95, Article ID: 267401.
[4]  Rao, K.S. and Nath, N.V. (2005) Influence of Rare-Earth Ion on Piezoelectric and Pyroelectric Properties of PBN System. Ferroelectrics, 325, 15-24.
https://doi.org/10.1080/00150190500326605
[5]  Jiang, W., Cao, W., Yi, X. and Chen, H. (2005) The Elastic and Piezoelectric Properties of Tungsten Bronze Ferroelectric Crystals (Sr0.7Ba0.3)2NaNb5O15 and (Sr0.3Ba0.7)2NaNb5O15. Journal of Applied Physics, 97, Article ID: 094106.
https://doi.org/10.1063/1.1881777
[6]  Raju, M.R. and Choudhary, R.N.P. (2006) Effect of Zr Substitution on Structural, Dielectric and Electrical Properties of Sr5SmTi3Nb7O30 Ce-ramics. Materials Chemistry and Physics, 99, 135-143. https://doi.org/10.1016/j.matchemphys.2005.09.084
[7]  Chen, W., Kine-muchi, Y., Watari, K., Tamura, T. and Miwa, K. (2006) Preparation of Grain‐Oriented Sr0.5Ba0.5Nb2O6 Ferroelectric Ceramics by Magnetic Alignment. Journal of the American Ceramic Society, 89, 381-384.
https://doi.org/10.1111/j.1551-2916.2005.00694.x
[8]  Ko, H., Kojima, S., Lushnikov, S.G., Katiyar, R.S., Kim, T.-H. and Ro, J.-H. (2002) Low-Temperature Transverse Dielectric and Pyroelectric Anomalies of Uniaxial Tungsten Bronze Crystals. Journal of Applied Physics, 92, 1536.
https://doi.org/10.1063/1.1491995
[9]  Wu, E. (1989) POWD, an Interactive Powder Diffraction Data Interpretation and Index Program. Ver.2.1. School of Physical Science, Flinders University South Bedford Park, Austral-ia.
[10]  Geiss, E.A., Scott, B.A., Burns, G., O’Kane, D.F. and Segmuller, A. (1969) Alkali Strontium-Barium-Lead Niobate Systems with a Tungsten Bronze Structure: Crystallographic Properties and Curie Points. Journal of the American Ceramic Society, 52, 276-281. https://doi.org/10.1111/j.1151-2916.1969.tb09183.x
[11]  Klug, H.P. and Alexander, L.E. (1974) X-Ray Diffraction Pro-cedures for Polycrystalline and Amorphous Materials. Willey-Interscience, New York.
[12]  Sahho, P.S., Panigrahi, A., Patri, S.K. and Choudhary, R.N.P. (2010) Impedance Spectroscopy of Ba3Sr2DyTi3V7O30 Ceramic. Bulletin of Materials Science, 33, 129-134. https://doi.org/10.1007/s12034-010-0018-8
[13]  Dash, S., Choudhary, R.N.P. and Kumar, A. (2014) Impedance Spectroscopy and Conduction Mechanism of Multiferroic (Bi0.6K0.4)(Fe0.6Nb0.4)O3. Journal of Physics and Chemistry of Solids, 75, 1376-1382. https://doi.org/10.1016/j.jpcs.2014.07.018
[14]  Singh, A.K., Barik, S.K., Choudhary, R.N.P. and Mahapatra, P.K. (2009) Ac Con-ductivity and Relaxation Mechanism in Ba0.9Sr0.1TiO3. Journal of Alloys and Compounds, 479, 39-42. https://doi.org/10.1016/j.jallcom.2008.12.130
[15]  Bhattacharya, S., Bharadwaj, S.S.N. and Krupanidhi, S.B. (2000) Alternating Current Conduction Behavior of Excimer Laser Ablated SrBi2Nb2O9 Thin Films. Journal of Applied Physics, 88, 4294. https://doi.org/10.1063/1.1287782

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413