全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Spectral Theory for the Weak Decay of Muons in a Uniform Magnetic Field

DOI: 10.4236/oalib.1105352, PP. 1-32

Subject Areas: Particle Physics, Mathematical Analysis

Keywords: Weak Decay of Muons, Fermi’s Theory, Uniform Magnetic Field, Spectral Theory

Full-Text   Cite this paper   Add to My Lib

Abstract

In this article we consider a mathematical model for the weak decay of muons in a uniform magnetic field according to the Fermi theory of weak interactions with V-A coupling. With this model we associate a Hamiltonian with cutoffs in an appropriate Fock space. No infrared regularization is assumed. The Hamiltonian is self-adjoint and has a unique ground state. We specify the essential spectrum and prove the existence of asymptotic fields from which we determine the absolutely continuous spectrum. The coupling constant is supposed sufficiently small.

Cite this paper

Guillot, J. (2019). Spectral Theory for the Weak Decay of Muons in a Uniform Magnetic Field. Open Access Library Journal, 6, e5352. doi: http://dx.doi.org/10.4236/oalib.1105352.

References

[1]  Greiner, W. and Müller. B. (2000) Gauge Theory of Weak Interactions. Springer, Berlin. https://doi.org/10.1007/978-3-662-04211-3
[2]  Guillot, J.C. (2017) Weak Interactions in a Background of a Uniform Magnetic Field. A Mathematical Model for the Inverse Beta Decay. I. Open Access Library Journal, 4, e4142. hal-01585239 and mp-arc 18-35.
[3]  Ammari, Z. (2004) Scattering Theory for a Class of Fermionic Pauli-Fierz Model. Journal of Functional Analysis, 208, 302-359.
https://doi.org/10.1016/S0022-1236(03)00217-9
[4]  Bony, J.-F., Faupin, J. and Sigal, I.M. (2012) Maximal Velocity of Photons in Non-Relativistic QED. Advances in Mathematics, 231, 3054-3078.
https://doi.org/10.1016/j.aim.2012.07.019
[5]  Dereziński, J. and Gérard, C. (1999) Asymptotic Completeness in Quantum Field Theory. Massive Pauli-Fierz Hamiltonians. Reviews in Mathematical Physics, 11, 383-450. https://doi.org/10.1142/S0129055X99000155
[6]  Frhlich, J., Griesemer, M. and Schlein, B. (2007) Rayleigh Scattering at Atoms with Dynamical Nuclei. Communications in Mathematical Physics, 271, 387-430.
https://doi.org/10.1007/s00220-006-0134-x
[7]  Hiroshima, F. (2001) Ground States and Spectrum of Quantum Electrodynamics of Nonrelativistic Particles. Transactions of the American Mathematical Society, 353, 4497-4528. https://doi.org/10.1090/S0002-9947-01-02719-2
[8]  Ho/egh-Krohn, R. (1968) Asymptotic Fields in Some Models of Quantum Field Theory. I. Journal of Mathematical Physics, 9, 2075-2080.
https://doi.org/10.1063/1.1664548
[9]  Ho/egh-Krohn, R. (1969) Asymptotic Fields in Some Models of Quantum Field Theory. II. Journal of Mathematical Physics, 10, 639-643.
https://doi.org/10.1063/1.1664889
[10]  Ho/egh-Krohn, R. (1969) Asymptotic Fields in Some Models of Quantum Field Theory. III. Journal of Mathematical Physics, 11, 185-188.
https://doi.org/10.1063/1.1665046
[11]  Ho/egh-Krohn, R. (1969) Boson Fields under a General Class of Cut-Off Interactions. Communications in Mathematical Physics, 12, 216-225.
https://doi.org/10.1007/BF01661576
[12]  Ho/egh-Krohn, R. (1970) On the Scattering Operator for Quantum Fields. Communications in Mathematical Physics, 18, 109-126.
https://doi.org/10.1007/BF01646090
[13]  Hubner, M. and Spohn, H. (1995) Radiative Decay: Nonperturbative Approaches. Reviews in Mathematical Physics, 7, 363-387.
https://doi.org/10.1142/S0129055X95000165
[14]  Kato, Y. and Mugibayashi, N. (1963) Regular Perturbation and Asymptotic Limits of Operators in Quantrm Field Theory. Progress of Theoretical Physics, 30, 103-133. https://doi.org/10.1143/PTP.30.103
[15]  Mugibayashi, N. and Kato, Y. (1964) Regular Perturbation and Asymptotic Limits of Operators in Fixed-Source Theory. Progress of Theoretical Physics, 31, 300-310.
https://doi.org/10.1143/PTP.31.300
[16]  Kato, Y. and Mugibayashi, N. (1971) Asymptotic Fields in Model Field Theories. I. Progress of Theoretical Physics, 45, 628-639. https://doi.org/10.1143/PTP.45.628
[17]  Takaesu, T. (2009) On the Spectral Analysis of Quantum Electrodynamics with Spatial Cutoffs. I. Journal of Mathematical Physics, 50, Article ID: 06230.
https://doi.org/10.1063/1.3133885
[18]  Takaesu, T. (2010) On Generalized Spin-Boson Models with Singular Perturbations. Hokkaido Mathematical Journal, 39, 317-349.
https://doi.org/10.14492/hokmj/1288357972
[19]  Ballesteros, M., Deckert, D.-A. and Hanle, F. (2018) Relation between the Resonant and the Scattering Matrix in the Massless Spin-Boson Model.
ArXiv 1801.04843
[20]  Alvarez, B.L. and Faupin, J. (2018) Scattering Theory for Mathematical Models of the Weak Interaction. ArXiv 1809.02456
[21]  Guinti, C. and Studenikin, A. (2015) Neutrino Electromagnetic Interactions: A Window to New Physics. Reviews of Modern Physics, 87, 531-591.
https://doi.org/10.1103/RevModPhys.87.531
[22]  Weinberg, S. (2005) The Quantum Theory of Fields. Vol. II. Cambridge University Press, Cambridge.
[23]  Beranger, J., et al. (2012) Review of Particle Physics. Physical Review D, 86, Article ID: 010001.
[24]  Barbaroux, J.-M. and Guillot, J.-C. (2009) Spectral Theory for a Mathematical Model of the Weak Interaction: The Decay of the Intermediate Vector Bosons W±. I. Advances in Mathematical Physics, 2009, Article ID: 978903. ArXiv0904.3171
https://doi.org/10.1155/2009/978903
[25]  Aschbacher, W.H., Barbaroux, J.-M., Faupin, J. and Guillot, J.-C. (2011) Spectral Theory for a Mathematical Model of the Weak Interaction: The Decay of the Intermediate Vector Bosons W±. II. Annales Henri Poincaré, 12, 1539-1570.
https://doi.org/10.1007/s00023-011-0114-3
[26]  Guillot, J.C. (2015) Spectral Theory of a Mathematical Model in Quantum Field Theory for Any Spin, Spectral Theory and Partial Differential Equations, 13-37, Contemp. Math., 640, Amer. Math. Soc., Providence, RI, 2015.
https://doi.org/10.1090/conm/640/12842
[27]  Barbaroux, J.-M., Faupin, J. and Guillot, J.-C. (2016) Spectral Properties for Hamiltonians of Weak Interactions, Operator Theory. Advances and Applications, 254, 11-36. https://doi.org/10.1007/978-3-319-29992-1_2
[28]  Barbaroux, J.-M., Faupin, J. and Guillot, J.-C. (2016) Spectral Theory near Thresholds for Weak Interactions with Massive Particles. Journal of Spectral Theory, 6, 505-555. https://doi.org/10.4171/JST/131
[29]  Barbaroux, J.-M., Faupin, J. and Guillot, J.-C. (2018) Local Decay for Weak Interactions with Massless Particles. Journal of Spectral Theory, 9, 453-512.
ArXiv 1611.07814. To Be Published in J. Spectr. Theory 2018.
https://doi.org/10.4171/JST/253
[30]  Glimm, J. and Jaffe, A. (1985) Quantum Field Theory and Statistical Mechanics. Birkhauser, Boston. https://doi.org/10.1007/978-1-4612-5158-3_4
[31]  Barbaroux, J.-M., Dimassi, M. and Guillot, J.-C. (2004) Quantum Electrodynamics of Relativistic Bound States with Cutoffs. Journal of Hyperbolic Differential Equations, 1, 271-314. https://doi.org/10.1142/S021989160400010X
[32]  Arai, A. (2000) Essential Spectrum of a Self-Adjoint Opeator on a Abstract Hilbert of Fock Type and Applications to Quantum Field Halmitonians. Journal of Mathematical Analysis and Applications, 246, 189-216.
https://doi.org/10.1006/jmaa.2000.6782
[33]  Takaesu, T. (2014) Essential Spectrum of a Fermionic Quantum Field Model. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 17, Article ID: 1450024. https://doi.org/10.1142/S0219025714500246
[34]  Alvarez, B.L., Faupin, J. and Guillot, J.-C. (2018) Hamiltonians Models of Interacting Fermion Fields in Quantum Field Theory. ArXiv 1810.10924
[35]  Thaller, B. (1992) The Dirac Equation. Texts and Monographs in Physics, Springer Verlag, Berlin. https://doi.org/10.1007/978-3-662-02753-0
[36]  Bhattacharya, K. (2007) Solution of the Dirac Equation in Presence of an Uniform Magnetic Field. ArXiv 0705.4275
[37]  Bhattacharya, K. and Pal, P.B. (2004) Inverse Beta Decay of Arbitrarily Polarized Neutrons in a Magnetic Field. Pramana, 62, 1041-1058.
https://doi.org/10.1007/BF02705251
[38]  Bhattacharya, K. and Pal, P.B. (2004) Neutrinos and Magnetic Fields: A Short Review. Proceedings of the Indian National Science Academy, 70, 145.
[39]  Hachem, G. (1993) Effet Zeeman pour un électron de Dirac. Annales de l’Institut Henri Poincaré, 58, 105-123.
[40]  Weinberg, S. (2005) The Quantum Theory of Fields. Vol. I. Cambridge University Press, Cambridge.
[41]  Dereziński, J. and Gérard, C. (2013) Mathematics of Quantization and Quantum Fields. Cambridge University Press, Cambridge.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413