全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

An Open-Ended Approach to Piagetian Development of Adaptive Behavior

DOI: 10.4236/oalib.1104434, PP. 1-33

Subject Areas: Psychiatry & Psychology

Keywords: Infant Development Free-Energy Sensorimotor Contingencies

Full-Text   Cite this paper   Add to My Lib

Abstract

In this paper, we are interested in the open-ended development of adaptive behavior by infant humans in the context of embodied, enactive cognitive science. We focus on the sensorimotor development of an infant child from gestation to toddler and discuss what aspects of the body, brain, and environment could allow for the sort of leaps of complexity observed in the developing infant that has heretofore not been replicable by artificial means. We use the backdrops of Piagetian developmental principles and Sensorimotor Contingency Theory to discuss this process in terms of skill proficiency, and discuss biologically plausible means for achieving it by referring to predictive processing and the free energy principle. We also refer to the theory of affordances to examine the selection of appropriate behaviors in a complex environment, and investigate phenomenological accounts to discuss the intentionality inherent in the purposeful behaviors that develop. Throughout this paper we develop a functional account of infant development which is based on the aforementioned theories and which leads to a biologically realistic explanation for the theory laid out by Piaget consistent with the embodied and enactive views.

Cite this paper

Harvey, K. (2018). An Open-Ended Approach to Piagetian Development of Adaptive Behavior. Open Access Library Journal, 5, e4434. doi: http://dx.doi.org/10.4236/oalib.1104434.

References

[1]  Varela, F.J., Rosch, E. and Thompson, E. (1991) The Embodied Mind. MIT Press, Cambridge, MA.
[2]  Pezzulo, G., Barsalou, L.W., Cangelosi, A., Fischer, M.H., McRae, K. and Spivey, M.J. (2011) The Mechanics of Embodiment: A Dialog on Embodiment and Computational Modeling. Frontiers in Psychology, 2, 1-21.
https://doi.org/10.3389/fpsyg.2011.00005
[3]  Froese, T. and Ziemke, T. (2009) Enactive Artificial Intelligence: Investigating the Systemic Organization of Life and Mind. Artificial Intelligence, 173, 466-500.
https://doi.org/10.1016/j.artint.2008.12.001
[4]  Di Paolo, E.A., Rohde, M. and Jaegher, H. (2010) Horizons for the Enactive Mind: Values, Social Interaction, and Play. In: Stewart, J., Gapenne, O. and Di Paolo, E.A., Enaction: Towards a New Paradigm for Cognitive Science, MIT Press, Cambridge, MA.
https://doi.org/10.7551/mitpress/9780262014601.003.0003
[5]  Dreyfus, H.L., Wrathall, M.A. and Malpas, J.E. (2000) Heidegger, Coping, and Cognitive Science. Essays in Honor of Hubert L. Dreyfus.
http://books.google.com/books?hl=en&lr=&id=c-HkEF7
Qg48C&oi=fnd&pg=PR7&dq=%22hubert l dreyfus%22
&ots=BgnYGONPbj&sig=MsV1o1bXg_dFf3FX3ZKXNz3rkjw
[6]  Rietveld, E. (2008) Special Section: The Skillful Body as a Concernful System of Possible Actions. Theory & Psychology, 18, 341-363.
https://doi.org/10.1177/0959354308089789
[7]  Kelly, S.D. (2014) The Relevance of Phenomenology to the Philosophy of Language and Mind. Routledge, New York.
[8]  Kelly, S.D. (2003) Merleau-Ponty on the Body: The Logic of Motor Intentional Activity. Ratio, 15, 376-391.
https://doi.org/10.1111/1467-9329.00198
[9]  Dotov, D.G., Nie, L. and Chemero, A. (2010) A Demonstration of the Transition from Ready-to-Hand to Unready-to-Hand. PLoS ONE, 5, e9433.
https://doi.org/10.1371/journal.pone.0009433
[10]  Barsalou, L.W. (2009) Simulation, Situated Conceptualization, and Prediction. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1281-1289.
https://doi.org/10.1098/rstb.2008.0319
[11]  Pezzulo, G. (2011) Grounding Procedural and Declarative Knowledge in Sensorimotor Anticipation. Mind & Language, 26, 78-114.
https://doi.org/10.1111/j.1468-0017.2010.01411.x
[12]  Dreyfus, H.L. (2007) The Return of the Myth of the Mental. Inquiry, 50, 352-365.
https://doi.org/10.1080/00201740701489245
[13]  Beaton, M. (2013) Phenomenology and Embodied Action. Constructivist Foundations, 8, 298-313.
[14]  Dreyfus, H. (1993) Heidegger’s Critique of Husserl’s (and Searle’s) Account of Intentionality. Social Research, 60, 1-13.
[15]  Wheeler, M. (2008) Cognition in Context: Phenomenology, Situated Robotics and the Frame Problem. International Journal of Philosophical Studies, 16, 323-349.
https://doi.org/10.1080/09672550802113235
[16]  Gibson, J.J. (1979) The Ecological Approach to Visual Perception. Houghton Mifflin, Boston, MA.
[17]  Barsalou, L.W. (1999) Perceptual Symbol Systems. Behavioral Brain Sciences, 22, 577-609.
[18]  Delafield-Butt, J.T. and Gangopadhyay, N. (2013) Sensorimotor Intentionality: The Origins of Intentionality in Prospective Agent Action. Developmental Review, 33, 399-425.
https://doi.org/10.1016/j.dr.2013.09.001
[19]  Lee, D.N. (2009) General Tau Theory: Evolution to Date. Perception, 38, 837-850.
https://doi.org/10.1068/pmklee
[20]  Prechtl, H.F. and Hopkins, B. (1986) Developmental Transformations of Spontaneous Movements in Early Infancy. Early Human Development, 14, 233-238.
https://doi.org/10.1016/0378-3782(86)90184-2
[21]  Kuniyoshi, Y. and Sangawa, S. (2006) A Neural Model for Exploration and Learning of Embodied Movement Patterns. Biological Cybernetics, 95, 589-605.
http://doi.org/10.20965/jrm.2008.p0358
[22]  Cisek, P. and Centre-ville, C.P.S. (2007) Cortical Mechanisms of Action Selection?: The Affordance Competition Hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 1585-1599.
[23]  Fuke, S., Ogino, M. and Asada, M. (2007) Body Image Constructed from Motor and Tactile Images with Visual Information. International Journal of Humanoid Robotics, 4, 347-364.
https://doi.org/10.1142/S0219843607001096
[24]  Schillaci, G., Hafner, V.V. and Lara, B. (2016) Exploration Behaviors, Body Representations, and Simulation Processes for the Development of Cognition in Artificial Agents. Frontiers in Robotics and AI, 3, 1-18.
https://doi.org/10.3389/frobt.2016.00039
[25]  Laflaquière, A., O’regan, J.K., Argentieri, S., Gas, B. and Terekhov, A.V. (2015) Learning Agent’s Spatial Configuration from Sensorimotor Invariants. Robotics and Autonomous Systems, 71, 49-59.
https://doi.org/10.1016/j.robot.2015.01.003
[26]  Le Clec’H, G., Gas, B. and O’Regan, J.K. (2016) Acquisition of a Space Representation by a Naive Agent from Sensorimotor Invariance and Proprioceptive Compensation. International Journal of Advanced Robotic Systems, 13, 1-15.
https://doi.org/10.1177/1729881416675134
[27]  Laflaquière, A. (2016) Grounding the Experience of a Visual Field through Sensorimotor Contingencies. Neurocomputing, 268, 142-152.
https://doi.org/10.1016/j.neucom.2016.11.085
[28]  Kuipers, B. (2008) Drinking from the Firehose of Experience. Artificial Intelligence in Medicine, 44, 155-170.
https://doi.org/10.1016/j.artmed.2008.07.010
[29]  Law, J., Lee, M., Hulse, M. and Tomassetti, A. (2011) The Infant Development Timeline and Its Application to Robot Shaping. Adaptive Behavior, 19, 335-358.
https://doi.org/10.1177/1059712311419380
[30]  Taga, G., Takaya, R. and Konishi, Y. (1999) Analysis of General Movements of Infants towards Understanding of Developmental Principle for Motor Control. IEEE International Conference on Systems, Man, and Cybernetics, 5, 678-683.
[31]  Baranès, A. and Oudeyer, P.Y. (2009) R-IAC: Robust Intrinsically Motivated Exploration and Active Learning. IEEE Transactions on Autonomous Mental Development, 1, 155-169.
https://doi.org/10.1109/TAMD.2009.2037513
[32]  Markant, D.B., Settles, B. and Gureckis, T.M. (2016) Self-Directed Learning Favors Local, Rather Than Global, Uncertainty.Cognitive Science, 40, 100-120.
https://doi.org/10.1111/cogs.12220
[33]  Bernstein, N. (1967) The Co-Ordination and Regulation of Movements. Pergamon-Press, Oxford.
[34]  Piaget, J. (1954) The Construction of Reality in the Child. Ballentine Books, Ballentine.
https://doi.org/10.1037/11168-000
[35]  Litman, J. (2005) Curiosity and the Pleasures of Learning: Wanting and Liking New Information. Cognition and Emotion, 19, 793-814.
https://doi.org/10.1080/02699930541000101
[36]  Friston, K., Kilner, J. and Harrison, L. (2006) A Free Energy Principle for the Brain. Journal of Physiology-Paris, 100, 70-87.
https://doi.org/10.1016/j.jphysparis.2006.10.001
[37]  Trevarthen, C.B. (1986) Neuroembryology and the Development of Perceptual Mechanisms. In: Falkner, F. and Tanner, J.M., Eds., Postnatal Growth Neurobiology, Springer, Boston, MA, 301-383.
https://doi.org/10.1007/978-1-4899-0522-2_13
[38]  Kamii, C. (1986) The Equilibration of Cognitive Structures: The Central Problem of Intellectual Development. Jean Piaget, Terrance Brown, Kishore Julian Thampy. American Journal of Education, 94, 574-577.
https://doi.org/10.1086/443876
[39]  Buhrmann, T. and Di Paolo, E. (2017) The Sense of Agency—A Phenomenological Consequence of Enacting Sensorimotor Schemes. Phenomenology and the Cognitive Sciences, 16, 207-236.
https://doi.org/10.1007/s11097-015-9446-7
[40]  Di Paolo, E.A., Barandiaran, X.E., Beaton, M. and Buhrmann, T. (2014) Learning to Perceive in the Sensorimotor Approach: Piaget’s Theory of Equilibration Interpreted Dynamically. Frontiers in Human Neuroscience, 8, 1-16.
https://doi.org/10.3389/fnhum.2014.00551
[41]  Egbert, M.D. and Barandiaran, X.E. (2014) Modeling Habits as Self-Sustaining Patterns of Sensorimotor Behavior. Frontiers in Human Neuroscience, 8, 1-15.
https://doi.org/10.3389/fnhum.2014.00590
[42]  Rabinovich, M.I., Varona, P., Tristan, I. and Afraimovich, V.S. (2014) Chunking Dynamics: Heteroclinics in Mind. Frontiers in Computational Neuroscience, 8, 1-10. https://doi.org/10.3389/fncom.2014.00022
[43]  Fonollosa, J., Neftci, E. and Rabino-vich, M. (2015) Learning of Chunking Sequences in Cognition and Behavior. PLoS Computational Biology, 11, 1-24.
https://doi.org/10.1371/journal.pcbi.1004592
[44]  Kiebel, S.J., Von Kriegstein, K., Daunizeau, J. and Friston, K.J. (2009) Recognizing Sequences of Sequences. PLoS Computational Biology, 5.
https://doi.org/10.1371/journal.pcbi.1000464
[45]  Franchak, J.M., van der Zalm, D.J. and Adolph, K.E. (2010) Learning by Doing: Action Performance Facilitates Affordance Perception. Vision Research, 50, 2758-2765. https://doi.org/10.1016/j.visres.2010.09.019
[46]  Tessitore, G. and Borriello, M. (2009) How Direct Is Perception of Affordances? A Computational Investigation of Grasping Affordances. Proceedings of the ICCM Conference.
http://iccm-conference.org/2009/proceedings/
[47]  Wokke, M.E., Knot, S.L., Fouad, A., Ridderinkhof, K.R. (2016) Conflict in the Kitchen: Contextual Modulation of Responsiveness to Affordances. Consciousness and Cognition, 40, 141-146.
https://doi.org/10.1016/j.concog.2016.01.007
[48]  Ishak, S., Franchak, J.M. and Adolph, K.E. (2014) Perception-Action Development from Infants to Adults: Per-ceiving Affordances for Reaching through Openings. Journal of Experimental Child Psychology, 117, 92-105.
https://doi.org/10.1016/j.jecp.2013.09.003
[49]  Ramstead, M.J.D., Veissière, S.P.L. and Kirmayer, L.J. (2016) Cultural Affordances: Scaffolding Local Worlds through Shared Intentionality and Regimes of Attention. Frontiers in Psychology, 7, 1090.
https://doi.org/10.3389/fpsyg.2016.01090
[50]  Jones, S.S. (2007) Imita-tion in Infancy: The Development of Mimicry. Psychological Science, 18, 593-599.
https://doi.org/10.1111/j.1467-9280.2007.01945.x
[51]  Rietveld, E. and Ki-verstein, J. (2014) A Rich Landscape of Affordances. Ecological Psychology, 26, 325-352.
https://doi.org/10.1080/10407413.2014.958035
[52]  Baillargeon, R. (1994) How Do Infants Learn about the Physical World? Current Directions in Psy-chological Science, 3, 133-140.
https://doi.org/10.1111/1467-8721.ep10770614
[53]  Baillargeon, R. (2004) In-fants’ Physical World. Current Directions in Psychological Science, 13, 89-94.
https://doi.org/10.1111/j.0963-7214.2004.00281.x
[54]  Smith, L. and Gasser, M. (2005) The Development of Embodied Cognition: Six Lessons from Babies. Artificial Life, 11, 13-29.
https://doi.org/10.1162/1064546053278973
[55]  Drescher, G.L. (1987) A Mechanism for Early Piagetian Learning. Proceeding of AAAI-87: Sixth National Conference on Artificial Intelligence, Seattle, WA, July 1987, 290-294.
[56]  Dreyfus, H. (2001) Why Heideggerian AI Failed and How Fixing It Would Require Making It More Heideggerian. Artificial Intelligence, 171, 1137-1160.
[57]  Mccauley, T.L. (2002) Neural Schemas: A Comprehensive Mechanism of Mind. PhD Dissertation, The University of Memphis, Memphis, TN.
[58]  Lee, M.H., Meng, Q. and Chao, F. (2007) Staged Competence Learning in Developmental Robotics. Adaptive Behavior, 15, 241-255.
https://doi.org/10.1177/1059712307082085
[59]  Pezzulo, G. (2007) Schemas and Schema-Based Architectures.
[60]  Pezzulo, G. and Cisek, P. (2016) Navigating the Affordance Landscape: Feedback Control as a Process Model of Behavior and Cognition. Trends in Cognitive Sciences, 20, 414-424.
https://doi.org/10.1016/j.tics.2016.03.013
[61]  MacDorman, K.F. (2000) Re-sponding to Affordances: Learning and Projecting a Sensorimotor Mapping. Pro-ceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), San Fran-cisco, CA, 24-28 April 2000, 3253-3259.
https://doi.org/10.1109/ROBOT.2000.845164
[62]  Law, J., Shaw, P., Lee, M. and Sheldon, M. (2014) From Saccades to Grasping: A Model of Coordinated Reaching through Simulated Development on a Humanoid Robot. IEEE Transactions on Autonomous Mental Development, 6, 93-109.
https://doi.org/10.1109/TAMD.2014.2301934
[63]  Shaw, P., Law, J. and Lee, M. (2015) Representations of Body Schemas for Infant Robot Development. Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), Providence, RI, 13-16 August 2015, 123-128.
https://doi.org/10.1109/DEVLRN.2015.7346128
[64]  O’Regan, J.K. and No?, A. (2001) A Sensorimotor Account of Vision and Visual Consciousness. Behavioral Brain Sciences, 24, 939-973.
https://doi.org/10.1017/S0140525X01000115
[65]  Dearden, A. and Demiris, Y. (2005) Learning Forward Models for Robots. In: Kaelbling, L.P. and Saffiotti, A., Eds., IJCAI 2005, Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, 30 July-5 August 2005, 1440-1445.
[66]  Miall, R.C. and Wolpert, D.M. (1996) Forward Models for Physiological Motor Control. Neural Networks, 9, 1265-1279.
https://doi.org/10.1016/S0893-6080(96)00035-4
[67]  Helmholtz, H. (1962) Physiological Optics. In: Southa, J., Ed., Treatise on Physiological Optics, Vol. 3, Dover, New York.
[68]  Friston, K.J., Daunizeau, J., Kilner, J. and Kiebel, S.J. (2010) Action and Behavior: A Free-Energy Formulation. Biological Cybernetics, 102, 227-260.
https://doi.org/10.1007/s00422-010-0364-z
[69]  Friston, K. (2008) Hierarchical Models in the Brain. PLoS Computational Biology, 4, e1000211.
https://doi.org/10.1371/journal.pcbi.1000211
[70]  Ashby, W.R. (1947) Princi-ples of the Self-Organizing Dynamic System. The Journal of General Psychology, 37, 125-128.
https://doi.org/10.1080/00221309.1947.9918144
[71]  Hohwy, J. (2015) The Predictive Mind. Oxford University Press, Oxford.
https://doi.org/10.1093/acprof:oso/9780199682737.001.0001
[72]  Seth, A.K. (2014) A Predictive Processing Theory of Sensorimotor Contingencies: Explaining the Puzzle of Perceptual Presence and Its Absence in Synesthesia. Cognitive Neuroscience, 5, 97-118.
https://doi.org/10.1080/17588928.2013.877880
[73]  Friston, K., Adams, R.A., Perrinet, L. and Breakspear, M. (2012) Perceptions as Hypotheses: Saccades as Experiments. Frontiers in Psychology, 3, 1-20.
https://doi.org/10.3389/fpsyg.2012.00151
[74]  Friston, K.J., Lin, M., Frith, C.D., Pezzulo, G., Hobson, J.A. and Ondobaka, S. (2017) Active Inference, Curiosity and Insight. Neural Computation, 29, 2633-2683.
https://doi.org/10.1162/neco_a_00999
[75]  Hemion, N.J. (2016) Discovering Latent States for Model Learning: Applying Sensorimotor Contingencies Theory and Predictive Processing to Model Context.
https://arxiv.org/abs/1608.00359
[76]  Friston, K., Rigoli, F., Ognibene, D., Mathys, C., Fitzgerald, T. and Pezzulo, G. (2015) Active Inference and Epistemic Value. Cognitive Neuroscience, 6, 187-224.
https://doi.org/10.1080/17588928.2015.1020053
[77]  Friston, K.J., et al. (2012) Dopamine, Affordance and Active Inference. PLoS Computational Biology, 8, e1002327.
https://doi.org/10.1371/journal.pcbi.1002327
[78]  Shadlen, M.N., Kiani, R., Hanks, T.D. and Churchland, A.K. (2008) An Intentional Framework. Better than Conscious, 71-101.
[79]  Cisek, P. and Kalaska, J.F. (2005) Neural Correlates of Reaching Decisions in Dorsal Premotor Cortex: Specification of Multiple Direction Choices and Final Selection of Action. Neuron, 45, 801-814.
https://doi.org/10.1016/j.neuron.2005.01.027
[80]  Archibald, S.J., Mateer, C.A. and Kerns, K.A. (2001) Utilization Behavior: Clinical Manifestations and Neurological Mechanisms. Neuropsychology Review, 11, 117-130.
https://doi.org/10.1023/A:1016673807158
[81]  Rietveld, E. (2012) Con-text-Switching and Responsiveness to Real Relevance. In: Kiverstein, J. and Wheeler, M., Eds., Heidegger Cognitive Science: New Directions in Cognitive Science and Philosophy, Palgrave Macmillan, Basingtoke, 105-135.
[82]  Bruineberg, J. (2017) Active Inference and the Primacy of the “I Can”. In: Metzinger, T. and Wiese, W., Eds., Philosophy and Predictive Processing, MIND Group, Frankfurt am Main, 67-84.
[83]  Basso, D. (2013) Planning, Prospective Memory, and Decision-Making: Three Challenges for Hierarchical Predictive Processing Models. Frontiers in Psychology, 3, 623.
https://doi.org/10.3389/fpsyg.2012.00623
[84]  Burr, C. (2017) Embodied Decisions and the Predictive Brain. In: Metzinger, T. and Wiese, W., Eds., Philosophy and Predictive Processing, MIND Group, Frankfurt am Main, 102-124.
[85]  Newell, K.M., Liu, Y.-T. and Mayer-Kress, G. (2001) Time Scales in Motor Learning and Development. Psychological Review, 108, 57-82.
[86]  Newell, K.M., Liu, Y.T. and Mayer-Kress, G. (2003) A Dynamical Systems Interpretation of Epigenetic Landscapes for Infant Motor Development. Infant Behavior and Development, 26, 449-472.
https://doi.org/10.1016/j.infbeh.2003.08.003
[87]  Liu, Y.-T., Mayer-Kress, G. and Newell, K.M. (2006) Qualitative and Quantitative Change in the Dynamics of Motor Learning. Journal of Experimental Psychology Human Perception & Performance, 32, 380-393.
https://doi.org/10.1037/0096-1523.32.2.380
[88]  Cisek, P. and Kalaska, J.F. (2010) Neural Mechanisms for Interacting with a World Full of Action Choices. An-nual Review of Neuroscience, 33, 269-298.
https://doi.org/10.1146/annurev.neuro.051508.135409
[89]  Cisek, P. (2012) Making Decisions through a Distributed Consensus. Current Opinion in Neurobiology, 22, 927-936.
https://doi.org/10.1016/j.conb.2012.05.007
[90]  den Ouden, H.E.M., Kok, P. and de Lange, F.P. (2012) How Prediction Errors Shape Perception, Attention, and Motivation. Frontiers in Psychology, 3, 1-12.
https://doi.org/10.3389/fpsyg.2012.00548
[91]  Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., O’Doherty, J. and Pezzulo, G. (2016) Active Inference and Learning. Neuroscience & Biobehavioral Reviews, 68, 862-879.
https://doi.org/10.1016/j.neubiorev.2016.06.022
[92]  Pezzulo, G., Rigoli, F. and Friston, K. (2015) Active Inference, Homeostatic Regulation and Adaptive Behavioural Control. Progress in Neurobiology, 134, 17-35.
https://doi.org/10.1016/j.pneurobio.2015.09.001
[93]  Pezzulo, G., Rigoli, F. and Chersi, F. (2013) The Mixed Instrumental Controller: Using Value of Information to Combine Habitual Choice and Mental Simulation. Frontiers in Psychology, 4, 1-15.
https://doi.org/10.3389/fpsyg.2013.00092
[94]  Clark, A. (2015) Embodied Prediction. Open MIND, 7, 1-21.
[95]  Pezzulo, G., van der Meer, M.A.A., Lansink, C.S. and Pennartz, C.M.A. (2014) Internally Generated Sequences in Learning and Executing Goal-Directed Behavior. Trends in Cognitive Science, 18, 647-657.
https://doi.org/10.1016/j.tics.2014.06.011
[96]  Wasserman, L. (2000) Bayesian Model Selection and Model Averaging. Journal of Mathematical Psychology, 44, 92-107.
[97]  Robbins, S. (2000) Bergson, Perception and Gibson. Journal of Con-sciousness Studies, 7, 23-45.
[98]  Rigoli, F., Pezzulo, G., Dolan, R. and Friston, K. (2017) A Goal-Directed Bayesian Framework for Categorization. Frontiers in Psy-chology, 8, 1-12.
https://doi.org/10.3389/fpsyg.2017.00408
[99]  Tononi, G. and Cirelli, C. (2006) Sleep Function and Synaptic Homeostasis. Sleep Medicine Reviews, 10, 49-62.
https://doi.org/10.1016/j.smrv.2005.05.002
[100]  Bruineberg, J. and Rietveld, E. (2014) Self-Organization, Free Energy Minimization, and Optimal Grip on a Field of Affordances. Frontiers in Human Neuroscience, 8, 1-14.
https://doi.org/10.3389/fnhum.2014.00599
[101]  Merleau-Ponty, M. (1962) Phenomenology of Perception. Smith, C., Trans., Routledge, London.
[102]  Dreyfus, H.L. (2002) Intelligence without Representation—Merleau-Ponty’s Critique of Mental Representation the Relevance of Phenomenology to Scientific Explanation. Phe-nomenology and the Cognitive Sciences, 1, 367-383.
https://doi.org/10.1023/A:1021351606209
[103]  Rietveld, E. and Brouwers, A.A. (2017) Optimal Grip on Affordances in Architectural Design Practices: An Eth-nography. Phenomenology and the Cognitive Sciences, 16, 545-564.
https://doi.org/10.1007/s11097-016-9475-x
[104]  Frijda, N.H. (1988) The Laws of Emotion. American Psychologist, 43, 349-358.
https://doi.org/10.1037/0003-066X.43.5.349
[105]  Pezzulo, G. and Ognibene, D. (2012) Proactive Action Preparation: Seeing Action Preparation as a Continuous and Proactive Process. Motor Control, 16, 386-424.
https://doi.org/10.1123/mcj.16.3.386
[106]  Pezzulo, G. (2017) Tracing the Roots of Cognition in Predictive Processing. Johannes Gutenberg-Universit?t Mainz, Mainz.
[107]  Phelps, E.A., Lempert, K.M. and Sokol-Hessner, P. (2014) Emotion and Decision Making: Multiple Modulatory Neural Circuits. Annual Review of Neurosci-ence, 37, 263-287.
https://doi.org/10.1146/annurev-neuro-071013-014119
[108]  Seth, A.K. (2013) Interoceptive Inference, Emotion, and the Embodied Self. Trends in Cognitive Science, 17, 565-573.
https://doi.org/10.1016/j.tics.2013.09.007
[109]  Lazarus, R.S. (1991) Progress on a Cognitive-Motivational-Relational Theory of Emotion. American Psychologist, 46, 819-834.
https://doi.org/10.1037/0003-066X.46.8.819
[110]  Schachter, S. and Singer, J. (1962) Cognitive, Social, and Physiological Determinants of Emotional State. Psychological Review, 69, 379-399.
https://doi.org/10.1037/h0046234
[111]  Pezzulo, G. and Castelfranchi, C. (2009) Thinking as the Control of Imagination: A Conceptual Framework for Goal-Directed Systems. Psychological Research PRPF, 73, 559-577.
https://doi.org/10.1007/s00426-009-0237-z
[112]  Sterling, P. (2012) Allostasis: A Model of Predictive Regulation. Physiology & Behavior, 106, 5-15.
https://doi.org/10.1016/j.physbeh.2011.06.004
[113]  Wiese, W. and Metzinger, T. (2017) Vanilla Predictive Processing for Philosophers: A Primer on Predictive Processing.
[114]  Friston, K.J., Daunizeau, J. and Kiebel, S.J. (2009) Reinforcement Learning or Active Inference? PLoS ONE, 4, e6421.
https://doi.org/10.1371/journal.pone.0006421
[115]  McGann, M. (2007) Enactive Theorists Do It on Purpose: Toward an Enactive Account of Goals and Goal-Directedness. Phenomenology and the Cognitive Sciences, 6, 463-483.
https://doi.org/10.1007/s11097-007-9074-y
[116]  Araújo, D. and Davids, K. (2011) What Exactly is Acquired during Skill Acquisition? Journal of Consciousness Studies, 18, 7-23.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413