全部 标题 作者
关键词 摘要


Preons, Standard Model, Gravity with Torsion and Black Holes

DOI: 10.4236/oalib.1103632, PP. 1-13

Subject Areas: Particle Physics

Keywords: Preons, Standard Model, Gravity, Torsion, Black Holes

Full-Text   Cite this paper   Add to My Lib

Abstract

A previous spin 1/2 preon model for the substructure of the standard model quarks and leptons is complemented to provide particle classification group, preon interactions and a tentative model of black holes. The goal of this study is to analyze a phenomenological theory of all interactions. A minimal amount of physical assumptions are made and only experimentally verified global and gauge groups are employed: SLq(2), the three of the standard model and the full Poincaré group. Gravity theory with torsion is introduced producing an axial-vector field coupled to preons. The mass of the axial-vector particle is estimated to be near the GUT scale. The boson can materialize above this scale and gain further mass to become a black hole at Planck mass while massless preons may form the horizon. A particle-black hole duality is proposed.

Cite this paper

Raitio, R. (2017). Preons, Standard Model, Gravity with Torsion and Black Holes. Open Access Library Journal, 4, e3632. doi: http://dx.doi.org/10.4236/oalib.1103632.

References

[1]  Raitio, R. (1980) A Model of Lepton and Quark Structure. Physica Scripta, 22, 197.
https://doi.org/10.1088/0031-8949/22/3/002
[2]  Coleman, S. and Mandula, J. (1967) All Possible Symmetries of the S Matrix. Physical Review, 159, 1251-1256.
[3]  Raitio, R. (2016) Combinatorial Preon Model for Matter and Unification. Open Access Library Journal, 3, e3032.
[4]  Raitio, R. (2017) On the Conformal Unity between Quantum Particles and General Relativity. Open Access Library Journal, 4, e3342.
https://doi.org/10.4236/oalib.1103342
[5]  Raitio, R. (2017) Preons, Standard Model and Gravity with Torsion.
http://vixra.org/pdf/1703.0247v1.pdf
[6]  Finkelstein, R. (2016) On the SLq(2) Extension of the Standard Model and the Measure of Charge. International Journal of Modern Physics A, 32, Article ID: 1730001.
https://doi.org/10.1142/S0217751X17300010
[7]  Cartan, E. (1980) Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion. In: Bergmann, P.G. and De Sabbata, V., Eds., Cosmology and Gravitation: Spin, Torsion, Rotation, and Supergravity, 489-491.
[8]  Kibble, T. (1961) Lorentz Invariance and the Gravitational Field. Journal of Mathematical Physics, 2, 212.
https://doi.org/10.1063/1.1703702
[9]  Sciama, D. (1962) In Recent Developments in General Relativity (Oxford).
[10]  Fabbri, L. (2017) Foundations Quadrilogy.
[11]  Greenberg, O. (2009) The Color Charge Degree of Freedom in Particle Physics. In: Greenberger, D., Hentschel, K. and Weinert, F., Eds., Compendium of Quantum Physics, Springer-Verlag, Berlin Heidelberg, 109-111.
https://doi.org/10.1007/978-3-540-70626-7_32
[12]  Raitio, R. (2015) The Decay of a Black Hole in a GUT Model. Open Access Library Journal, 2, e2031.
https://doi.org/10.4236/oalib.1102031
[13]  Thomson, W. (1868) VI.—On Vortex Motion. Transactions of the Royal Society of Edinburgh, 25, 217-260.
https://doi.org/10.1017/S0080456800028179
[14]  Faddeev, L. and Niemi, A. (1997) Stable Knot-Like Structures in Classical Field Theory. Nature, 387, 58-61.
https://doi.org/10.1038/387058a0
[15]  Fabbri, L. (2007) On a Completely Antisymmetric Cartan Torsion Tensor. Annales de la Fondation Louis de Broglie, 32, 215.
[16]  Hayashi, K. (1976) Restrictions on Gauge Theory of Gravitation. Physics Letters B, 65, 437.
[17]  Xin, Y. (1989) The Ω-Field Theory of Gravitation and Cosmology. Astrophysical and Space Science, 154, 321-331.
https://doi.org/10.1007/BF00642814
[18]  Audretsch, J. and Lmmerzahl, C. (1988) Constructive Axiomatic Approach to Space Time Torsion. Classical and Quantum Gravity, 5, 1285-1295.
https://doi.org/10.1088/0264-9381/5/10/008
[19]  Macias, A. and Lmmerzahl, C. (1993) On the Dimensionality of Space-Time. Journal of Mathematical Physics, 34, 4540-4553. https://doi.org/10.1063/1.530355
[20]  Hamzavi1, M., Movahedi, M., Thylwe, K.-E. and Rajabi, A. (2012) Approximate Analytical Solution of the Yukawa Potential with Arbitrary Angular Momenta. Chinese Physics Letters, 29, Article ID: 080302.

Full-Text


comments powered by Disqus