全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Protective Effect of bFGF on Bone Marrow Mesenchymal Stem Cell against Hydrogen Peroxide-Induced Apoptosis

DOI: 10.4236/oalib.1102393, PP. 1-8

Subject Areas: Cell Biology

Keywords: Basic Fibroblast Growth Factor, Bone Marrow Mesenchymal Stem Cells, Hydrogen Peroxide, Oxidative Stress, Apoptosis, Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract

Bone marrow mesenchymal stem cells (BMSCs) transplantation has emerged as a promising treatment for various central nervous system diseases. However, oxidative stress results in poor survival of transplanted BMSCs in injury central nervous system (CNS). Basic fibroblast growth factor (bFGF) has been reported to have anti-apoptotic properties in serial of cells in oxidative stress. This study was designed to investigate protective effect and potential mechanisms of bFGF against hydrogen peroxide (H2O2)-induced apoptosis of BMSCs. BMSCs were pretreated with 20 ng/ml of bFGF for 30 minutes, followed by exposure to 500 μM H2O2 and bFGF together for 1 hour. bFGF treatment significantly attenuated H2O2-induced cytotoxicity and apoptosis of BMSCs. Moreover, bFGF effectively decreased the levels of TNF-α and IL-6 and increased expression ratio of Bcl-2/Bax in H2O2-induced BMSCs. The findings suggest that bFGF is likely to be an effectively protective agent against oxidative stress-induced apoptosis for BMSCs.

Cite this paper

Gao, X. , Hu, G. , Fan, G. , Mei, Z. , Deng, L. and Du, J. (2016). Protective Effect of bFGF on Bone Marrow Mesenchymal Stem Cell against Hydrogen Peroxide-Induced Apoptosis. Open Access Library Journal, 3, e2393. doi: http://dx.doi.org/10.4236/oalib.1102393.

References

[1]  Woodbury, D., Schwarz, E.J., Prockop, D.J. and Black, I.B. (2000) Adult Rat and Human Bone Marrow Stromal Cells Differentiate into Neurons. Journal of Neuroscience Research, 61, 364-370.
http://dx.doi.org/10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C
[2]  Scintu, F., Reali, C., Pillai, R., Badiali, M., Sanna, M.A., Argiolu, F., Ristaldi, M.S. and Sogos, V. (2006) Differentiation of Human Bone Marrow Stem Cells into Cells with a Neural Phenotype: Diverse Effects of Two Specific Treatments. BMC Neuroscience, 7, 14-25.
http://dx.doi.org/10.1186/1471-2202-7-14
[3]  Qian, D., Gong, J., He, Z., Hua, J., Lin, S., Xu, C., et al. (2015) Bone Marrow-Derived Mesenchymal Stem Cells Repair Necrotic Pancreatic Tissue and Promote Angiogenesis by Secreting Cellular Growth Factors Involved in the SDF- 1α/CXCR4 Axis in Rats. Stem Cells International, 2015, Article ID: 306836.
http://dx.doi.org/10.1155/2015/306836
[4]  Deng, W., Han, Q., Liao, L., Li, C., Ge, W., Zhao, Z., You, S., Deng, H. and Zhao, R.C. (2004) Allogeneic Bone Marrow-Derived flk-1 Sca-1-Mesenchymal Stem Cells Leads to Stable Mixed Chimerism and Donor-Specific Tolerance. Experimental Hematology, 32, 861-867.
http://dx.doi.org/10.1016/j.exphem.2004.06.009
[5]  Kwon, D.S., Gao, X., Liu, Y.B., Dulchavsky, D.S., Danyluk, A.L., Bansal, M., et al. (2008) Treatment with Bone Marrow-Derived Stromal Cells Accelerates Wound Healing in Diabetic Rats. International Wound Journal, 5, 453- 463.
http://dx.doi.org/10.1111/j.1742-481X.2007.00408.x
[6]  Bergwerf, I., De Vocht, N., Tambuyzer, B., Verschueren, J., Reekmans, K., Daans, J., et al. (2009) Reporter Gene- Expressing Bone Marrow-Derived Stromal Cells Are Immune-Tolerated Following Implantation in the Central Nervous System of Syngeneic Immunocompetent Mice. BMC Biotechnology, 9, 1-14.
http://dx.doi.org/10.1186/1472-6750-9-1
[7]  Schapira, A.H. and Jenner, P. (2011) Etiology and Pathogenesis of Parkinson’s Disease. Movement Disorders, 26, 1049-1055.
http://dx.doi.org/10.1002/mds.23732
[8]  Namaka, M.P., Sawchuk, M., MacDonald, S.C., Jordan, L.M. and Hochman, S. (2001) Neurogenesis in Postnatal Mouse Dorsal Root Ganglia. Experimental Neurology, 172, 60-69.
http://dx.doi.org/10.1006/exnr.2001.7761
[9]  Zhang, H.Y., Zhang, X., Wang, Z.G., Shi, H.X., Wu, F.Z., Lin, B.B., et al. (2013) Exogenous Basic Fibroblast Growth Factor Inhibits ER Stress-Induced Apoptosis and Improves Recovery from Spinal Cord Injury. CNS Neuroscience & Therapeutics, 19, 20-29.
http://dx.doi.org/10.1111/cns.12013
[10]  Xiong, N., Yang, H., Liu, L., Xiong, J., Zhang, Z., Zhang, X., et al. (2013) bFGF Promotes the Differentiation and Effectiveness of Human Bone Marrow Mesenchymal Stem Cells in a Rotenone Model for Parkinson’s Disease. Environmental Toxicology and Pharmacology, 36, 411-422.
http://dx.doi.org/10.1016/j.etap.2013.05.005
[11]  Liu, Y., Yi, X.C., Guo, G., Long, Q.F., Wang, X.A., Zhong, J., Liu, W.P., et al. (2014) Basic Fibroblast Growth Factor Increases the Transplantation-Mediated Therapeutic Effect of Bone Mesenchymal Stem Cells Following Traumatic Brain Injury. Molecular Medicine Reports, 9, 333-339.
[12]  Satoh, T., Enokido, Y., Kubo, T., Yamada, M. and Hatanaka, H. (1998) Oxygen Toxicity Induces Apoptosis in Neuronal Cells. Cellular and Molecular Neurobiology, 18, 649-666.
http://dx.doi.org/10.1023/A:1020269802315
[13]  O’Driscoll, C., Wallace, D. and Cotter, T.G. (2007) bFGF Promotes Photoreceptor Cell Survival in Vitro by PKA- Mediated Inactivation of Glycogen Synthase Kinase 3β and CREB-Dependent Bcl-2 Up-Regulation. Journal of Neurochemistry, 103, 860-870.
http://dx.doi.org/10.1111/j.1471-4159.2007.04827.x
[14]  Wang, Z., Wang, Y., Ye, J., Lu, X., Cheng, Y., Xiang, L., et al. (2015) bFGF Attenuates Endoplasmic Reticulum Stress and Mitochondrial Injury on Myocardial Ischaemia/Reperfusion via Activation of PI3K/Akt/ERK1/2 Pathway. Journal of Cellular and Molecular Medicine, 19, 595-607.
http://dx.doi.org/10.1111/jcmm.12346
[15]  Del Poeta, G., Venditti, A., Del Principe, M.I., Maurillo, L., Buccisano, F., Tamburini, A., et al. (2003) Amount of Spontaneous Apoptosis Detected by Bax/Bcl-2 Ratio Predicts Outcome in Acute Myeloid Leukemia (AML). Blood, 101, 2125-2131.
http://dx.doi.org/10.1182/blood-2002-06-1714
[16]  Coombes, E., Jiang, J., Chu, X.P., Inoue, K., Seeds, J., Branigan, D., et al. (2011) Pathophysiologically Relevant Levels of Hydrogen Peroxide Induce Glutamate-Independent Neurodegeneration That Involves Activation of Transient Receptor Potential Melastatin 7 Channels. Antioxidants & Redox Signaling, 14, 1815-1827.
http://dx.doi.org/10.1089/ars.2010.3549
[17]  Shen, J.N., Xu, L.X., Shan, L., Zhang, W.D., Li, H.L. and Wang, R. (2015) Neuroprotection of ( )-2-(1-Hydroxyl-4- Oxocyclohexyl) Ethyl Caffeate against Hydrogen Peroxide and Lipopolysaccharide Induced Injury via Modulating Arachidonic Acid Network and p38-MAPK Signaling. Current Alzheimer Research, 12, 892-902.
http://dx.doi.org/10.2174/156720501209151019111244
[18]  Zeng, X., Yu, S.P., Taylor, T., Ogle, M. and Wei, L. (2012) Protective Effect of Apelin on Cultured Rat Bone Marrow Mesenchymal Stem Cells against Apoptosis. Stem Cell Research, 8, 357-367.
http://dx.doi.org/10.1016/j.scr.2011.12.004
[19]  Suzuki, Y., Yanagisawa, M., Yagi, H., Nakatani, Y. and Yu, R.K. (2010) Involvement of Beta1-Integrin Up-Regula- tion in Basic Fibroblast Growth Factor- and Epidermal Growth Factor-Induced Proliferation of Mouse Neuroepithelial Cells. Journal of Biological Chemistry, 285, 18443-18451.
http://dx.doi.org/10.1074/jbc.M110.114645
[20]  Ma, F., Xiao, Z., Chen, B., Hou, X., Han, J., Zhao, Y., et al. (2014) Accelerating Proliferation of Neural Stem/Proge- nitor Cells in Collagen Sponges Immobilized with Engineered Basic Fibroblast Growth Factor for Nervous System Tissue Engineering. Biomacromolecules, 15, 1062-1068.
http://dx.doi.org/10.1021/bm500062n
[21]  Luo, J.C., Lin, H.Y., Lu, C.L., Wang, L.Y., Chang, F.Y., Lin, H.C., et al. (2008) Dexamethasone Inhibits Basic Fibroblast Growth Factor-Stimulated Gastric Epithelial Cell Proliferation. Biochemical Pharmacology, 76, 841-849.
http://dx.doi.org/10.1016/j.bcp.2008.07.010
[22]  Park, T.S. and Han, J.Y. (2000) Derivation and Characterization of Pluripotent Embryonic Germ Cells in Chicken. Molecular Reproduction and Development, 56, 475-482.
http://dx.doi.org/10.1002/1098-2795(200008)56:4<475::AID-MRD5>3.0.CO;2-M
[23]  Colenci, R., da Silva Assun??o, L.R., Mogami Bomfim, S.R., de Assis Golim, M., Deffune, E. and Penha Oliveira, S.H. (2014) Bone Marrow Mesenchymal Stem Cells Stimulated by bFGF Up-Regulated Protein Expression in Comparison with Periodontal Fibroblasts in Vitro. Archives of Oral Biology, 59, 268-276.
http://dx.doi.org/10.1016/j.archoralbio.2013.11.017
[24]  Wang, J.J., Liu, Y.L., Sun, Y.C., Ge, W., Wang, Y.Y., Dyce, P.W., et al. (2015) Basic Fibroblast Growth Factor Stimulates the Proliferation of Bone Marrow Mesenchymal Stem Cells in Giant Panda (Ailuropoda melanoleuca). PLoS ONE, 10, e0137712.
http://dx.doi.org/10.1371/journal.pone.0137712
[25]  Burdzińska, A., Bartoszuk-Bruzzone, U., Godlewski, M.M. and Orzechowski, A. (2006) Sodium Ascorbate and Basic Fibroblast Growth Factor Protect Muscle-Derived Cells from H2O2-Induced Oxidative Stress. Comparative Medicine, 56, 493-501.
[26]  Peluso, J.J. (2003) Basic Fibroblast Growth Factor (bFGF) Regulation of the Plasma Membrane Calcium ATPase (PMCA) as Part of an Anti-Apoptotic Mechanism of Action. Biochemical Pharmacology, 66, 1363-1369.
http://dx.doi.org/10.1016/S0006-2952(03)00486-6
[27]  Debnath, T., Park, S.R., Kim, D.H., Jo, J.E. and Lim, B.O. (2013) Anti-Oxidant and Anti-Inflammatory Activities of Inonotus obliquus and Germinated Brown Rice Extracts. Molecules, 18, 9293-9304.
http://dx.doi.org/10.3390/molecules18089293
[28]  Park, J., Kang, W., Ryu, S.W., Kim, W.I., Chang, D.Y., Lee, D.H., et al. (2012) Hepatitis C Virus Infection Enhances TNFα-Induced Cell Death via Suppression of NF-κB. Hepatology, 56, 831-840.
http://dx.doi.org/10.1002/hep.25726
[29]  Zhang, L., Tao, L., Shi, T., Zhang, F., Sheng, X., Cao, Y., et al. (2015) Paeonol Inhibits B16F10 Melanoma Metastasis in Vitro and in Vivo via Disrupting Proinflammatory Cytokines-Mediated NF-κB and STAT3 Pathways. IUBMB Life, 67, 778-788.
http://dx.doi.org/10.1002/iub.1435
[30]  Di Liddo, R., Bertalot, T., Schuster, A., Schrenk, S., Tasso, A., Zanusso, I., et al. (2015) Anti-Inflammatory Activity of Wnt Signaling in Enteric Nervous System: In Vitro Preliminary Evidences in Rat Primary Cultures. Journal of Neuroinflammation, 12, 23-41.
http://dx.doi.org/10.1186/s12974-015-0248-1
[31]  Hu, H.W., Li, X.K., Zheng, R.Y., Xiao, J., Zeng, J.Q. and Hou, S.T. (2009) bFGF Expression Mediated by a Hypoxia-Regulated Adenoviral Vector Protects PC12 Cell Death Induced by Serum Deprivation. Biochemical and Biophysical Research, 390, 115-120.
http://dx.doi.org/10.1016/j.bbrc.2009.09.077
[32]  Zeng, B., Chen, H., Zhu, C., Ren, X., Lin, G. and Cao, F. (2008) Effects of Combined Mesenchymal Stem Cells and Heme Oxygenase-1 Therapy on Cardiac Performance. Europe Journal Cardiothoracic Surgery, 34, 850-856.
http://dx.doi.org/10.1016/j.ejcts.2008.05.049
[33]  Markou, T., Dowling, A.A., Kelly, T. and Lazou, A. (2009) Regulation of Bcl-2 Phosphorylation in Response to Oxidative Stress in Cardiac Myocytes. Free Radical Research, 43, 809-816. http://dx.doi.org/10.1080/10715760903071649
[34]  Susnow, N., Zeng, L., Margineantu, D. and Hockenbery, D.M. (2009) Bcl-2 Family Proteins as Regulators of Oxidative Stress. Seminars in Cancer Biology, 19, 42-49.
http://dx.doi.org/10.1016/j.semcancer.2008.12.002
[35]  Wu, J., Feng, X., Zhang, B., Li, J., Xu, X., Liu, J., et al. (2014) Blocking the bFGF/STAT3 Interaction through Specific Signaling Pathways Induces Apoptosis in Glioblastoma Cells. Journal of Neuro-Oncology, 120, 33-41.
http://dx.doi.org/10.1007/s11060-014-1529-8
[36]  Nishida, S., Nagamine, H., Tanaka, Y. and Watanabe, G. (2003) Protective Effect of Basic Fibroblast Growth Factor against Myocyte Death and Arrhythmias in Acute Myocardial Infarction in Rats. Circulation Journal, 67, 334-339.
http://dx.doi.org/10.1253/circj.67.334

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413