全部 标题 作者
关键词 摘要


A New Histone Structure Which Binds DNA at Its Eight Subunit N-Termini

DOI: 10.4236/oalib.1102386, PP. 1-20

Subject Areas: Molecular Biology

Keywords: Histone, Octamer, Nucleosome, Protamine, Helix

Full-Text   Cite this paper   Add to My Lib

Abstract

A new model for the nucleosome is presented. The histone octamer core is unchanged, but the location of the DNA is different. Since the highest number, and highest concentration of positively- charged amino acid residues is located not in the “superhelical ramp” of the octamer core, but rather in the domain of the eight histone subunit N-termini collectively, the DNA is therefore placed there. The role models for the protein and DNA structures in the N-terminal domain are taken from the comparable role models for protein and DNA in the protamine-DNA complex in sperm cells. The histone subunit N-termini are each modeled as beta-strands, with psi/phi values of approximately /﹣130.5° respectively, which gives a straight chain. The DNA is modeled according to the “straight ladder” model of Tai Te Wu. Each DNA phosphate group is bound to a lysine or arginine residue of histone by a 3 A salt bridge. The new model lends itself so readily to further models of higher-order chromatin structure that the problem shifts entirely, from one of deducing any higher-order structure at all, to one of distinguishing between several models which compete for our attention.

Cite this paper

Biegeleisen, K. (2016). A New Histone Structure Which Binds DNA at Its Eight Subunit N-Termini. Open Access Library Journal, 3, e2386. doi: http://dx.doi.org/10.4236/oalib.1102386.

References

[1]  Kornberg, R.D. and Thomas, J.O. (1974) Chromatin Structure; Oligomers of the Histones. Science, 184, 865-868.
http://dx.doi.org/10.1126/science.184.4139.865
[2]  Kornberg, R.D. and Thomas, J.O. (1974) Chromatin Structure: A Repeating Unit of Histones and DNA. Science, 184, 868-871.
http://dx.doi.org/10.1126/science.184.4139.868
[3]  Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. and Richmond, T.J. (1997) Crystal Structure of the Nucleosome Core Particle at 2.8 A Resolution. Nature, 389, 251-260.
http://dx.doi.org/10.1038/38444
PDB: 1AOI
http://www.rcsb.org/pdb/explore/explore.do?structureId=1aoi
[4]  Biegeleisen, K. (2014) Histone Structure. I. Current Concepts. Slides 191-247.
https://notahelix.net
[5]  Biegeleisen, K. (2006) The Probable Structure of the Protamine-DNA Complex.
https://notahelix.net
[6]  Biegeleisen, K. (2006) The Probable Structure of the Protamine-DNA Complex. Journal of Theoretical Biology, 241, 533-540.
http://dx.doi.org/10.1016/j.jtbi.2005.12.015
[7]  Biegeleisen, K. (2005) Protein Data Bank. Accession Numbers 2AWR (Protamine-DNA Complex 1) and 2AWS (Protamine-DNA Complex 2).
http://www.rcsb.org/pdb/
2AWR: http://www.rcsb.org/pdb/files/2awr.pdb
2AWS: http://www.rcsb.org/pdb/files/2aws.pdb
[8]  Biegeleisen, K. (2014) Histone Structure. Part II. A Model Which Places DNA in the N-Terminal Region of the Octamer. Slides 82-130 review Protamine-DNA structure, assuming a parallel relationship between P1 and P2. Slides 131-141 present an antiparallel variation on the structure.
https://notahelix.net
[9]  Wu, R. and Wu, T.T. (1996) A Novel Intact Circular dsDNA Supercoil. Bulletin of Mathematical Biology, 58, 1171- 1185.
http://dx.doi.org/10.1007/BF02458388
[10]  Wu, T.T. (1969) Secondary Structures of DNA. Proceedings of the National Academy of Sciences of the United States of America, 63, 400-405.
http://www.pnas.org/content/63/2/400.full.pdf html
http://dx.doi.org/10.1073/pnas.63.2.400
[11]  Gehring, K., Leroy, J.L. and Gueron, M. (1993) A Tetrameric DNA Structure with Protonated Cytosine-Cytosine Base Pairs. Nature, 363, 561-565.
http://dx.doi.org/10.1038/363561a0
PDB: 225D
http://www.rcsb.org/pdb/explore/explore.do?structureId=225D
[12]  Ramakrishnan, V. (1997) Histone Structure and the Organization of the Nucleosome. Annual Review of Biophysics and Biomolecular Structure, 26, 83-112.
http://dx.doi.org/10.1146/annurev.biophys.26.1.83
[13]  van Holde, K. (1989) Chromatin. Springer-Verlag, New York, 497 p.
http://dx.doi.org/10.1007/978-1-4612-3490-6
[14]  Biegeleisen, K. (2014) Histone Structure. Part II. A Model Which Places DNA in the N-Terminal Region of the Octamer.
https://notahelix.net
[15]  Biegeleisen, K. (2014) Histone Structure. Part II. A Model Which Places DNA in the N-Terminal Region of the Octamer. Slides 142-171.
[16]  Biegeleisen, K. (2014) Histone Structure. Part II. A Model Which Places DNA in the N-Terminal Region of the Octamer. Slides 211-220.
[17]  A High-Quality Animated Gif of the Longitudinal View Has Been Posted at
https://notahelix.net/animated_gif/
[18]  Biegeleisen, K. (2014) Histone Structure. Part II. A Model Which Places DNA in the N-Terminal Region of the Octamer. Slides 239-252.
[19]  Biegeleisen, K. (2014) Histone Structure. Part II. A Model Which Places DNA in the N-Terminal Region of the Octamer. Slides 235-238.
[20]  Biegeleisen, K. (2014) Histone Structure. Part III. A Possible New Structure for Chromosomes.
https://notahelix.net.
[21]  Biegeleisen, K. (2014) Histone Structure. Part II. A Model Which Places DNA in the N-Terminal Region of the Octamer. Slides 271-276.
[22]  Biegeleisen, K. (2002) The Double Non-Helix. Part I. The Science and History of Topologically Non-Linked (“TN”) DNA. Slides 271-341.
https://notahelix.net
[23]  Biegeleisen, K. (2002) Topologically Non-Linked Circular Duplex DNA. Bulletin of Mathematical Biology, 64, 589- 609.
http://dx.doi.org/10.1006/bulm.2002.0288
[24]  Biegeleisen, K. (2006) The Probable Structure of the Protamine-DNA Complex. Slides 49-69.
https://notahelix.net

Full-Text


comments powered by Disqus