All Title Author
Keywords Abstract

PLOS ONE  2008 

Age-Specific Differences in Oncogenic Pathway Deregulation Seen in Human Breast Tumors

DOI: 10.1371/journal.pone.0001373

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purpose To define the biology driving the aggressive nature of breast cancer arising in young women. Experimental Design Among 784 patients with early stage breast cancer, using prospectively-defined, age-specific cohorts (young ≤45 years; older ≥65 years), 411 eligible patients (n = 200≤45 years; n = 211≥65 years) with clinically-annotated Affymetrix microarray data were identified. GSEA, signatures of oncogenic pathway deregulation and predictors of chemotherapy sensitivity were evaluated within the two age-defined cohorts. Results In comparing deregulation of oncogenic pathways between age groups, a higher probability of PI3K (p = 0.006) and Myc (p = 0.03) pathway deregulation was observed in breast tumors arising in younger women. When evaluating unique patterns of pathway deregulation, a low probability of Src and E2F deregulation in tumors of younger women, concurrent with a higher probability of PI3K, Myc, and β-catenin, conferred a worse prognosis (HR = 4.15). In contrast, a higher probability of Src and E2F pathway activation in tumors of older women, with concurrent low probability of PI3K, Myc and β-catenin deregulation, was associated with poorer outcome (HR = 2.7). In multivariate analyses, genomic clusters of pathway deregulation illustrate prognostic value. Conclusion Results demonstrate that breast cancer arising in young women represents a distinct biologic entity characterized by unique patterns of deregulated signaling pathways that are prognostic, independent of currently available clinico-pathologic variables. These results should enable refinement of targeted treatment strategies in this clinically challenging situation.

References

[1]  Adami HO, Malker B, Holmberg L, Persson I, Stone B (1986) The relation between survival and age at diagnosis in breast cancer. N Engl J Med 315: 559–563.
[2]  El Saghir NS, Seoud M, Khalil MK, Charafeddine M, Salem ZK, et al. (2006) Effects of young age at presentation on survival in breast cancer. BMC Cancer 6: 194.
[3]  Nixon AJ, Neuberg D, Hayes DF, Gelman R, Connolly JL, et al. (1994) Relationship of patient age to pathologic features of the tumor and prognosis for patients with stage I or II breast cancer. J Clin Oncol 12: 888–894.
[4]  Holli K, Isola J (1997) Effect of age on the survival of breast cancer patients. Eur J Cancer 33: 425–428.
[5]  Kollias J, Elston CW, Ellis IO, Robertson JF, Blamey RW (1997) Early-onset breast cancer–histopathological and prognostic considerations. Br J Cancer 75: 1318–1323.
[6]  Albain KS, Allred DC, Clark GM (1994) Breast cancer outcome and predictors of outcome: are there age differentials? J Natl Cancer Inst Monogr 35–42.
[7]  de la Rochefordiere A, Asselain B, Campana F, Scholl SM, Fenton J, et al. (1993) Age as prognostic factor in premenopausal breast carcinoma. Lancet 341: 1039–1043.
[8]  Aebi S, Gelber S, Castiglione-Gertsch M, Gelber RD, Collins J, et al. (2000) Is chemotherapy alone adequate for young women with oestrogen-receptor-positive breast cancer? Lancet 355: 1869–1874.
[9]  Bild AH, Yao G, Chang JT, Wang Q, Potti A, et al. (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439: 353–357.
[10]  Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, et al. (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365: 671–679.
[11]  Ivshina AV, George J, Senko O, Mow B, Putti TC, et al. (2006) Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res 66: 10292–10301.
[12]  Anders C, Hsu D, Broadwater G, Acharya C, Foekens JA, et al. (2007) Young Age at Diagnosis with Worse Prognosis and Defines a Subset of Breast Cancers with Shared Patterns of Gene Expression. submitted for publication.
[13]  Potti A, Dressman HK, Bild A, Riedel RF, Chan G, et al. (2006) Genomic signatures to guide the use of chemotherapeutics. Nat Med 12: 1294–1300.
[14]  Ihaka RaGRE (1996) R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics 5: 299–314.
[15]  Pittman J, Huang E, Nevins J, Wang Q, West M (2004) Bayesian analysis of binary prediction tree models for retrospectively sampled outcomes. Biostatistics 5: 587–601.
[16]  West M, Blanchette C, Dressman H, Huang E, Ishida S, et al. (2001) Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci U S A 98: 11462–11467.
[17]  Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550.
[18]  Harrell F (2001) Regression Modeling Strategies: with Applications to Linear Models Logistic Regression and Survival Analysis. New York: Springer.
[19]  Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, et al. (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30: 193–204.
[20]  Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, et al. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98: 10869–10874.
[21]  Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, et al. (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100: 8418–8423.
[22]  Johnson DG, Degregori J (2006) Putting the Oncogenic and Tumor Suppressive Activities of E2F into Context. Curr Mol Med 6: 731–738.
[23]  Gorgoulis VG, Zacharatos P, Mariatos G, Kotsinas A, Bouda M, et al. (2002) Transcription factor E2F-1 acts as a growth-promoting factor and is associated with adverse prognosis in non-small cell lung carcinomas. J Pathol 198: 142–156.
[24]  Han S, Park K, Bae BN, Kim KH, Kim HJ, et al. (2003) E2F1 expression is related with the poor survival of lymph node-positive breast cancer patients treated with fluorouracil, doxorubicin and cyclophosphamide. Breast Cancer Res Treat 82: 11–16.
[25]  Rabbani F, Richon VM, Orlow I, Lu ML, Drobnjak M, et al. (1999) Prognostic significance of transcription factor E2F-1 in bladder cancer: genotypic and phenotypic characterization. J Natl Cancer Inst 91: 874–881.
[26]  Bramis J, Zacharatos P, Papaconstantinou I, Kotsinas A, Sigala F, et al. (2004) E2F-1 transcription factor immunoexpression is inversely associated with tumor growth in colon adenocarcinomas. Anticancer Res 24: 3041–3047.
[27]  Rounbehler RJ, Rogers PM, Conti CJ, Johnson DG (2002) Inactivation of E2f1 enhances tumorigenesis in a Myc transgenic model. Cancer Res 62: 3276–3281.
[28]  Summy JM, Gallick GE (2003) Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 22: 337–358.
[29]  Lehrer S, O'Shaughnessy J, Song HK, Levine E, Savoretti P, et al. (1989) Activity of pp60c-src protein kinase in human breast cancer. Mt Sinai J Med 56: 83–85.

Full-Text

comments powered by Disqus