All Title Author
Keywords Abstract

PLOS ONE  2008 

Age-Specific Differences in Oncogenic Pathway Deregulation Seen in Human Breast Tumors

DOI: 10.1371/journal.pone.0001373

Full-Text   Cite this paper   Add to My Lib


Purpose To define the biology driving the aggressive nature of breast cancer arising in young women. Experimental Design Among 784 patients with early stage breast cancer, using prospectively-defined, age-specific cohorts (young ≤45 years; older ≥65 years), 411 eligible patients (n = 200≤45 years; n = 211≥65 years) with clinically-annotated Affymetrix microarray data were identified. GSEA, signatures of oncogenic pathway deregulation and predictors of chemotherapy sensitivity were evaluated within the two age-defined cohorts. Results In comparing deregulation of oncogenic pathways between age groups, a higher probability of PI3K (p = 0.006) and Myc (p = 0.03) pathway deregulation was observed in breast tumors arising in younger women. When evaluating unique patterns of pathway deregulation, a low probability of Src and E2F deregulation in tumors of younger women, concurrent with a higher probability of PI3K, Myc, and β-catenin, conferred a worse prognosis (HR = 4.15). In contrast, a higher probability of Src and E2F pathway activation in tumors of older women, with concurrent low probability of PI3K, Myc and β-catenin deregulation, was associated with poorer outcome (HR = 2.7). In multivariate analyses, genomic clusters of pathway deregulation illustrate prognostic value. Conclusion Results demonstrate that breast cancer arising in young women represents a distinct biologic entity characterized by unique patterns of deregulated signaling pathways that are prognostic, independent of currently available clinico-pathologic variables. These results should enable refinement of targeted treatment strategies in this clinically challenging situation.


[1]  Adami HO, Malker B, Holmberg L, Persson I, Stone B (1986) The relation between survival and age at diagnosis in breast cancer. N Engl J Med 315: 559–563.
[2]  El Saghir NS, Seoud M, Khalil MK, Charafeddine M, Salem ZK, et al. (2006) Effects of young age at presentation on survival in breast cancer. BMC Cancer 6: 194.
[3]  Nixon AJ, Neuberg D, Hayes DF, Gelman R, Connolly JL, et al. (1994) Relationship of patient age to pathologic features of the tumor and prognosis for patients with stage I or II breast cancer. J Clin Oncol 12: 888–894.
[4]  Holli K, Isola J (1997) Effect of age on the survival of breast cancer patients. Eur J Cancer 33: 425–428.
[5]  Kollias J, Elston CW, Ellis IO, Robertson JF, Blamey RW (1997) Early-onset breast cancer–histopathological and prognostic considerations. Br J Cancer 75: 1318–1323.
[6]  Albain KS, Allred DC, Clark GM (1994) Breast cancer outcome and predictors of outcome: are there age differentials? J Natl Cancer Inst Monogr 35–42.
[7]  de la Rochefordiere A, Asselain B, Campana F, Scholl SM, Fenton J, et al. (1993) Age as prognostic factor in premenopausal breast carcinoma. Lancet 341: 1039–1043.
[8]  Aebi S, Gelber S, Castiglione-Gertsch M, Gelber RD, Collins J, et al. (2000) Is chemotherapy alone adequate for young women with oestrogen-receptor-positive breast cancer? Lancet 355: 1869–1874.
[9]  Bild AH, Yao G, Chang JT, Wang Q, Potti A, et al. (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439: 353–357.
[10]  Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, et al. (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365: 671–679.
[11]  Ivshina AV, George J, Senko O, Mow B, Putti TC, et al. (2006) Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res 66: 10292–10301.
[12]  Anders C, Hsu D, Broadwater G, Acharya C, Foekens JA, et al. (2007) Young Age at Diagnosis with Worse Prognosis and Defines a Subset of Breast Cancers with Shared Patterns of Gene Expression. submitted for publication.
[13]  Potti A, Dressman HK, Bild A, Riedel RF, Chan G, et al. (2006) Genomic signatures to guide the use of chemotherapeutics. Nat Med 12: 1294–1300.
[14]  Ihaka RaGRE (1996) R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics 5: 299–314.
[15]  Pittman J, Huang E, Nevins J, Wang Q, West M (2004) Bayesian analysis of binary prediction tree models for retrospectively sampled outcomes. Biostatistics 5: 587–601.
[16]  West M, Blanchette C, Dressman H, Huang E, Ishida S, et al. (2001) Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci U S A 98: 11462–11467.
[17]  Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550.
[18]  Harrell F (2001) Regression Modeling Strategies: with Applications to Linear Models Logistic Regression and Survival Analysis. New York: Springer.
[19]  Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, et al. (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30: 193–204.
[20]  Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, et al. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98: 10869–10874.
[21]  Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, et al. (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100: 8418–8423.
[22]  Johnson DG, Degregori J (2006) Putting the Oncogenic and Tumor Suppressive Activities of E2F into Context. Curr Mol Med 6: 731–738.
[23]  Gorgoulis VG, Zacharatos P, Mariatos G, Kotsinas A, Bouda M, et al. (2002) Transcription factor E2F-1 acts as a growth-promoting factor and is associated with adverse prognosis in non-small cell lung carcinomas. J Pathol 198: 142–156.
[24]  Han S, Park K, Bae BN, Kim KH, Kim HJ, et al. (2003) E2F1 expression is related with the poor survival of lymph node-positive breast cancer patients treated with fluorouracil, doxorubicin and cyclophosphamide. Breast Cancer Res Treat 82: 11–16.
[25]  Rabbani F, Richon VM, Orlow I, Lu ML, Drobnjak M, et al. (1999) Prognostic significance of transcription factor E2F-1 in bladder cancer: genotypic and phenotypic characterization. J Natl Cancer Inst 91: 874–881.
[26]  Bramis J, Zacharatos P, Papaconstantinou I, Kotsinas A, Sigala F, et al. (2004) E2F-1 transcription factor immunoexpression is inversely associated with tumor growth in colon adenocarcinomas. Anticancer Res 24: 3041–3047.
[27]  Rounbehler RJ, Rogers PM, Conti CJ, Johnson DG (2002) Inactivation of E2f1 enhances tumorigenesis in a Myc transgenic model. Cancer Res 62: 3276–3281.
[28]  Summy JM, Gallick GE (2003) Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 22: 337–358.
[29]  Lehrer S, O'Shaughnessy J, Song HK, Levine E, Savoretti P, et al. (1989) Activity of pp60c-src protein kinase in human breast cancer. Mt Sinai J Med 56: 83–85.


comments powered by Disqus