All Title Author
Keywords Abstract

PLOS ONE  2007 

A Model-Based Analysis of Chemical and Temporal Patterns of Cuticular Hydrocarbons in Male Drosophila melanogaster

DOI: 10.1371/journal.pone.0000962

Full-Text   Cite this paper   Add to My Lib


Drosophila Cuticular Hydrocarbons (CH) influence courtship behaviour, mating, aggregation, oviposition, and resistance to desiccation. We measured levels of 24 different CH compounds of individual male D. melanogaster hourly under a variety of environmental (LD/DD) conditions. Using a model-based analysis of CH variation, we developed an improved normalization method for CH data, and show that CH compounds have reproducible cyclic within-day temporal patterns of expression which differ between LD and DD conditions. Multivariate clustering of expression patterns identified 5 clusters of co-expressed compounds with common chemical characteristics. Turnover rate estimates suggest CH production may be a significant metabolic cost. Male cuticular hydrocarbon expression is a dynamic trait influenced by light and time of day; since abundant hydrocarbons affect male sexual behavior, males may present different pheromonal profiles at different times and under different conditions.


[1]  Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50: 371–393.
[2]  Jones WD, Cayirlioglu P, Grunwald Kadow I, Vosshall LB (2007) Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445(7123): 86–90.
[3]  Van der Goes van Naters W, Carlson JR (2007) Receptors and neurons for fly odors in Drosophila. Curr Biol 17: 606–612.
[4]  Jallon JM (1984) A few chemical words exchanged by Drosophila during courtship and mating. Behav Genet 14(5): 441–478.
[5]  Cobb M, Jallon J (1990) Pheromones, mate recognition and courtship stimulation in the Drosophila melanogaster species sub-group. Animal Behaviour 39(6): 1058–1067.
[6]  Ferveur JF, Jallon JM (1996) Genetic control of male cuticular hydrocarbons in Drosophila melanogaster. Genet Res 67(3): 211–218.
[7]  Levine JD, Funes P, Dowse HB, Hall JC (2002) Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298(5600): 2010–2012.
[8]  Chertemps T, Duportets L, Labeur C, Ueda R, Takahashi K, et al. (2007) A female-biased expressed elongase involved in long-chain hydrocarbon biosynthesis and courtship behavior in Drosophila melanogaster. PNAS 104(11): 4273–4278.
[9]  Chertemps T, Duportets L, Labeur C, Ueyama M, Wicker-Thomas C (2006) A female-specific desaturase gene responsible for diene hydrocarbon biosynthesis and courtship behaviour in Drosophila melanogaster. Insect Mol Biol 15(4): 465–473.
[10]  Chertemps T, Duportets L, Labeur C, Wicker-Thomas C (2005) A new elongase selectively expressed in Drosophila male reproductive system. Biochem Biophys Res Commun 333(4): 1066–1072.
[11]  Dallerac R, Labeur C, Jallon JM, Knipple DC, Roelofs WL, et al. (2000) A delta 9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proc Natl Acad Sci U S A 97(17): 9449–9454.
[12]  Ferveur JF (1991) Genetic control of pheromones in Drosophila simulans. I. ngbo, a locus on the second chromosome. Genetics 128(2): 293–301.
[13]  Takahashi A, Tsaur SC, Coyne JA, Wu CI (2001) The nucleotide changes governing cuticular hydrocarbon variation and their evolution in Drosophila melanogaster. Proc Natl Acad Sci U S A 98(7): 3920–3925.
[14]  Coyne JA (1996) Genetics of a difference in male cuticular hydrocarbons between two sibling species, Drosophila simulans and D. sechellia. Genetics 143(4): 1689–1698.
[15]  Coyne JA, Crittenden AP, Mah K (1994) Genetics of a pheromonal difference contributing to reproductive isolation in Drosophila. Science 265(5177): 1461–1464.
[16]  Mas F, Jallon JM (2005) Sexual isolation and cuticular hydrocarbon differences between Drosophila santomea and Drosophila yakuba. J Chem Ecol 31(11): 2747–2752.
[17]  Gleason JM, Jallon JM, Rouault JD, Ritchie MG (2005) Quantitative trait loci for cuticular hydrocarbons associated with sexual isolation between Drosophila simulans and D. sechellia. Genetics 171(4): 1789–1798.
[18]  Rouault JD, Marican C, Wicker-Thomas C, Jallon JM (2004) Relations between cuticular hydrocarbon (HC) polymorphism, resistance against desiccation and breeding temperature; a model for HC evolution in D. melanogaster and D. simulans. Genetica 120(1–3): 195–212.
[19]  Markowitz H (1970) Portofolio selection: Efficient diversification of investments. New Haven: Yale University Press.
[20]  Rouault J, Capy P, Jallon JM (2000) Variations of male cuticular hydrocarbons with geoclimatic variables: An adaptative mechanism in Drosophila melanogaster? Genetica 110(2): 117–130.
[21]  Jallon J, Kunesch G, Bricard L, Pennanec'h M (1997) Incorporation of fatty acids into cuticular hydrocarbons of male and female Drosophila melanogaster. J Insect Physiol 43(12): 1111–1116.
[22]  Skroblin A, Blows MW (2006) Measuring natural and sexual selection on breeding values of male display traits in Drosophila serrata. J Evol Biol 19(1): 35–41.
[23]  Blows MW, Chenoweth SF, Hine E (2004) Orientation of the genetic variance-covariance matrix and the fitness surface for multiple male sexually selected traits. Am Nat 163(3): 329–340.
[24]  Blows MW, Allan RA (1998) Levels of mate recognition within and between two Drosophila species and their hybrids. Am Nat 152(6): 826–837.
[25]  Loehlin JC (2004) Latent variable models : An introduction to factor, path, and structural analysis. Hillsdale, , N.J.: L. Erlbaum Associates.
[26]  Bartholomew DJ, Knott M (1999) Latent variable models and factor analysis. London: Arnold.
[27]  Markowitz H (1952) Portfolio selection. The Journal of Finance 7(1): 77–91.
[28]  Soroker V, Hefetz A (2000) Hydrocarbon site of synthesis and circulation in the desert ant Cataglyphis niger. Journal of Insect Physiology 46(7): 1097–1102.
[29]  Cox TF (1994) Multidimensional scaling. London: Chapman & Hall.
[30]  Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315(5814): 972–976.
[31]  Ward JH (1963) Hierarchical grouping to optimize an objective function. JASA 48: 236–244.
[32]  Benjamini Y, Hochsberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological) 57(1): 289–300.
[33]  Marcillac F, Bousquet F, Alabouvette J, Savarit F, Ferveur JF (2005) A mutation with major effects on Drosophila melanogaster sex pheromones. Genetics 171(4): 1617–1628.
[34]  Ueyama M, Chertemps T, Labeur C, Wicker-Thomas C (2005) Mutations in the desat1 gene reduces the production of courtship stimulatory pheromones through a marked effect on fatty acids in Drosophila melanogaster. Insect Biochem Mol Biol 35(8): 911–920.
[35]  Clark AG (1989) Causes and consequences of variation in energy storage in Drosophila melanogaster. Genetics 123(1): 131–144.
[36]  Labeur C, Dallerac R, Wicker-Thomas C (2002) Involvement of desat1 gene in the control of Drosophila melanogaster pheromone biosynthesis. Genetica 114(3): 269–274.
[37]  Gibbs A, Pomonis JG (1995) Physical properties of insect cuticular hydrocarbons: The effects of chain length, methyl-branching and unsaturation. Comparative Biochemistry and Physiology – Part B: Biochemistry and Molecular Biology 112(2): 243–249.
[38]  Grillet M, Dartevelle L, Ferveur JF (2006) A Drosophila male pheromone affects female sexual receptivity. Proc Biol Sci 273(1584): 315–323.
[39]  Foley B, Chenoweth SF, Nuzhdin SV, Blows MW (2007) Natural genetic variation in cuticular hydrocarbon expression in male and female drosophila melanogaster. Genetics 175(3): 1465–1477.
[40]  Ejima A, Smith BP, Lucas C, Levine JD, Griffith LC (2005) Sequential learning of pheromonal cues modulates memory consolidation in trainer-specific associative courtship conditioning. Curr Biol 15(3): 194–206.
[41]  Ginzel MD, Millar JG, Hanks LM (2003) (Z)-9-pentacosene: Contact sex pheromone of the locust borer, Megacyllene robiniae. Chemoecology 13(3): 135–141.
[42]  R Development Core Team (2006) R: A language and environment for statistical computing. 2.4.1.
[43]  Thomson GH (1948) The factorial analysis of human ability. London: University of London Press.
[44]  Nicholls DF, Quinn BG (1982) Random coefficient autoregressive models : An introduction. New York: Springer-Verlag.
[45]  Dowse HB, Ringo JM (1987) Further evidence that the circadian clock in Drosophila is a population of coupled ultradian oscillators. J Biol Rhythms 2: 65–76.


comments powered by Disqus