全部 标题 作者
关键词 摘要

PLOS ONE  2009 

Origin of Saxitoxin Biosynthetic Genes in Cyanobacteria

DOI: 10.1371/journal.pone.0005758

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Paralytic shellfish poisoning (PSP) is a potentially fatal syndrome associated with the consumption of shellfish that have accumulated saxitoxin (STX). STX is produced by microscopic marine dinoflagellate algae. Little is known about the origin and spread of saxitoxin genes in these under-studied eukaryotes. Fortuitously, some freshwater cyanobacteria also produce STX, providing an ideal model for studying its biosynthesis. Here we focus on saxitoxin-producing cyanobacteria and their non-toxic sisters to elucidate the origin of genes involved in the putative STX biosynthetic pathway. Methodology/Principal Findings We generated a draft genome assembly of the saxitoxin-producing (STX+) cyanobacterium Anabaena circinalis ACBU02 and searched for 26 candidate saxitoxin-genes (named sxtA to sxtZ) that were recently identified in the toxic strain Cylindrospermopsis raciborskii T3. We also generated a draft assembly of the non-toxic (STX?) sister Anabaena circinalis ACFR02 to aid the identification of saxitoxin-specific genes. Comparative phylogenomic analyses revealed that nine putative STX genes were horizontally transferred from non-cyanobacterial sources, whereas one key gene (sxtA) originated in STX+ cyanobacteria via two independent horizontal transfers followed by fusion. In total, of the 26 candidate saxitoxin-genes, 13 are of cyanobacterial provenance and are monophyletic among the STX+ taxa, four are shared amongst STX+ and STX-cyanobacteria, and the remaining nine genes are specific to STX+ cyanobacteria. Conclusions/Significance Our results provide evidence that the assembly of STX genes in ACBU02 involved multiple HGT events from different sources followed presumably by coordination of the expression of foreign and native genes in the common ancestor of STX+ cyanobacteria. The ability to produce saxitoxin was subsequently lost multiple independent times resulting in a nested relationship of STX+ and STX? strains among Anabaena circinalis strains.

References

[1]  Plumley FG (2001) Purification of an enzyme involved in saxitoxin synthesis. J Phycol 37: 926–928.
[2]  Taroncher-Oldenburg G, Anderson DM (2000) Identification and characterization of three differentially expressed genes, encoding S-adenosylhomocysteine hydrolase, methionine aminopeptidase, and a histone-like protein, in the toxic dinoflagellate Alexandrium fundyense. Appl Environ Microbiol 66: 2105–2112.
[3]  Sako Y, Yoshida T, Uchida A, Arakawa O, Noguchi T, et al. (2001) Purification and characterization of a sulfotransferase specific to N-21 of saxitoxin and gonyautoxin 2+3 from the toxic dinoflagellate Gymnodinium catenatum (dinophyceae). J Phycol 37: 1044–1051.
[4]  Pomati F, Burns BP, Neilan BA (2004) Identification of an Na(+)-dependent transporter associated with saxitoxin-producing strains of the cyanobacterium Anabaena circinalis. Appl Environ Microbiol 70: 4711–4719.
[5]  Kellmann R, Neilan B (2007) Biochemical characterization of paralytic shellfish toxin biosynthesis in vitro. J Phycol 43: 497–508.
[6]  Kellmann R, Mihali TK, Jeon YJ, Pickford R, Pomati F, et al. (2008) Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. Appl Environ Microbiol 74: 4044–4053.
[7]  Christiansen G, Molitor C, Philmus B, Kurmayer R (2008) Nontoxic strains of cyanobacteria are the result of major gene deletion events induced by a transposable element. Mol Biol Evol 25: 1695–1704.
[8]  Beltran EC, Neilan BA (2000) Geographical segregation of the neurotoxin-producing cyanobacterium Anabaena circinalis. Appl Environ Microbiol 66: 4468–4474.
[9]  Krohn A (2005) Genome analysis of a saxitoxin-producing cyanobacterium. Fairbanks: University of Alaska.
[10]  Rapid Annotation using Subsystem Technology (RAST)
[11]  Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29: 2607–2618.
[12]  Felsenstein J (1973) Maximum-likelihood estimation of evolutionary trees from continuous characters. Am J Hum Genet 25: 471–492.
[13]  Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.
[14]  Carmichael WW, Evans WR, Yin QQ, Bell P, Moczydlowski E (1997) Evidence for paralytic shellfish poisons in the freshwater cyanobacterium Lyngbya wollei (Farlow ex Gomont) comb. nov. Appl Environ Microbiol 63: 3104–3110.
[15]  Hawser SP, Codd GA, Capone DG, Carpenter EJ (1991) A neurotoxic factor associated with the bloom-forming cyanobacterium Trichodesmium. Toxicon 29: 277–278.
[16]  Shimizu Y, Norte M, Hori A, Genenah A, Kobayashi M (1984) Biosynthesis of saxitoxin analogs: the unexpected pathway. J Am Chem Soc 106: 6433–6434.
[17]  Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, et al. (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34: D257–260.
[18]  Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247: 536–540.
[19]  Nguyen TT, Brown S, Fedorov AA, Fedorov EV, Babbitt PC, et al. (2008) At the periphery of the amidohydrolase superfamily: Bh0493 from Bacillus halodurans catalyzes the isomerization of D-galacturonate to D-tagaturonate. Biochemistry 47: 1194–1206.
[20]  Chorus I, Bartram J (1999) Toxic cyanobacteria in water : a guide to their public health consequences, monitoring, and management. London; New York: E & FN Spon. xv.
[21]  Uribe P, Fuentes D, Valdes J, Shmaryahu A, Zuniga A, et al. (2008) Preparation and analysis of an expressed sequence tag library from the toxic dinoflagellate Alexandrium catenella. Mar Biotechnol (NY).
[22]  Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT (2006) Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res 16: 1099–1108.
[23]  Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
[24]  Laskowski RA, Hutchinson EG, Michie AD, Wallace AC, Jones ML, et al. (1997) PDBsum: a Web-based database of summaries and analyses of all PDB structures. Trends Biochem Sci 22: 488–490.
[25]  Bolch CJS, Blackburn SI (1996) Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. J Applied Phycol 8: 5–13.
[26]  Kim J-S, Park Y-H, Yoon B-D, Oh H-M (1999) Establishment of axenic cultures of Anabaena flos-aquae and Aphanothece nidulans (cyanobacteria) by lysozyme treatment. Journal of Phycology 35: 865–869.
[27]  Wilson K (1990) Preparation of Genomic DNA from Bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, et al., editors. Current Protocols in Molecular Biology. New York: Wiley InterScience. pp. 2.4.1–2.4.5.
[28]  Rowan R, Powers DA (1991) Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae). Mar Ecol Progress Ser 71: 65–73.
[29]  Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30: 3059–3066.
[30]  Stamatakis A, Ludwig T, Meier H (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21: 456–463.
[31]  Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17: 57–86.
[32]  Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18: 691–699.
[33]  Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, et al. (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75.
[34]  Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, et al. (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35: 3100–3108.
[35]  Moustafa A, Bhattacharya D (2008) EasyCluster: a simple protein sequences clustering tool. 1.0 ed
[36]  Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35: D61–65.
[37]  O'Brien EA, Koski LB, Zhang Y, Yang L, Wang E, et al. (2007) TBestDB: a taxonomically broad database of expressed sequence tags (ESTs). Nucleic Acids Res 35: D445–451.
[38]  Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, et al. (2008) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 36: D13–21.
[39]  Gish W (1996) Washington University BLAST (WU BLAST). 2.0 ed
[40]  Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56: 564–577.
[41]  Moustafa A, Bhattacharya D (2008) PhyloSort: a user-friendly phylogenetic sorting tool and its application to estimating the cyanobacterial contribution to the nuclear genome of Chlamydomonas. BMC Evol Biol 8: 6.

Full-Text

comments powered by Disqus