Background The incidence of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infection is rising in the developed world but appears to be rare in developing countries. One explanation for this difference is that resource poor countries lack the diagnostic microbiology facilities necessary to detect the presence of CA-MRSA carriage and infection. Methodology and Principal Findings We developed diagnostic microbiology capabilities at the Angkor Hospital for Children, Siem Reap, western Cambodia in January 2006 and in the same month identified a child with severe community-acquired impetigo caused by CA-MRSA. A study was undertaken to identify and describe additional cases presenting between January 2006 and December 2007. Bacterial isolates underwent molecular characterization using multilocus sequence typing, staphylococcal cassette chromosome mec (SCCmec) typing, and PCR for the presence of the genes encoding Panton-Valentine Leukocidin (PVL). Seventeen children were identified with CA-MRSA infection, of which 11 had skin and soft tissue infection and 6 had invasive disease. The majority of cases were unrelated in time or place. Molecular characterization identified two independent MRSA clones; fifteen isolates were sequence type (ST) 834, SCCmec type IV, PVL gene-negative, and two isolates were ST 121, SCCmec type V, PVL gene-positive. Conclusions This represents the first ever report of MRSA in Cambodia, spread of which would pose a significant threat to public health. The finding that cases were mostly unrelated in time or place suggests that these were sporadic infections in persons who were CA-MRSA carriers or contacts of carriers, rather than arising in the context of an outbreak.
References
[1]
Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, et al. (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298: 1763–71.
[2]
Herold BC, Immergluck LC, Maranan MC, Lauderdale DS, Gaskin RE, et al. (1998) Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA 279: 593–8.
[3]
CDC (1998) Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus–Minnesota and North Dakota, 1997–1999. JAMA 282: 1123–5.
[4]
Okuma K, Iwakawa K, Turnidge JD, Grubb WB, Bell JM, et al. (2002) Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J Clin Microbiol 40: 4289–94.
[5]
Adhikari RP, Cook GM, Lamont I, Lang S, Heffernan H, Smith JM (2002) Phenotypic and molecular characterization of community occurring, Western Samoan phage pattern methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 50: 825–31.
[6]
Dufour P, Gillet Y, Bes M, Lina G, Vandenesch F, et al. (2002) Community-acquired methicillin-resistant Staphylococcus aureus infections in France: emergence of a single clone that produces Panton-Valentine leukocidin. Clin Infect Dis 35: 819–24.
Liassine N, Auckenthaler R, Descombes MC, Bes M, Vandenesch F, Etienne J (2004) Community-acquired methicillin-resistant Staphylococcus aureus isolated in Switzerland contains the Panton-Valentine leukocidin or exfoliative toxin genes. J Clin Microbiol 42: 825–8.
[9]
Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como-Sabetti K, et al. (2005) Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med 352: 1436–44.
[10]
Lo WT, Lin WJ, Tseng MH, Lu JJ, Lee SY, et al. (2007) Nasal carriage of a single clone of community-acquired methicillin-resistant Staphylococcus aureus among kindergarten attendees in northern Taiwan. BMC Infect Dis 7: 51.
[11]
Kardén-Lilja M, Ibrahem S, Vuopio-Varkila J, Salmenlinna S, Lyytik?inen O, et al. (2007) Panton-Valentine leukocidin genes and staphylococcal chromosomal cassette mec types amongst Finnish community-acquired methicillin-resistant Staphylococcus aureus strains, 1997–1999. Eur J Clin Microbiol Infect Dis 26: 729–33.
[12]
Kim ES, Song JS, Lee HJ, Choe PG, Park KH, et al. (2007) A survey of community-associated methicillin-resistant Staphylococcus aureus in Korea. J Antimicrob Chemother 60: 1108–14.
[13]
Ben Nejma M, Mastouri M, Bel Hadj Jrad B, Nour M (2009) Characterization of ST80 Panton-Valentine leukocidin-positive community-acquired methicillin-resistant Staphylococcus aureus clone in Tunisia. Diagn Microbiol Infect Dis Apr 2: [Epub ahead of print].
[14]
Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, et al. (2006) Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med 355: 666–74.
[15]
King MD, Humphrey BJ, Wang YF, Kourbatova EV, Ray SM, Blumberg HM (2006) Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann Intern Med 144: 309–17.
[16]
Nimmo GR, Coombs GW (2008) Community-associated methicillin-resistant Staphylococcus aureus (MRSA) in Australia. Int J Antimicrob Agents 31: 401–10.
[17]
Gillet Y, Issartel B, Vanhems P, Fournet JC, Lina G, et al. (2002) Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 359: 753–59.
[18]
Lina G, Piemont Y, Godail-Gamot F, Bes M, Peter MO, et al. (1999) Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29: 1128–32.
[19]
World Development Indicators database, April 2009. . Last accessed 22nd July 2009.
[20]
Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Disk Susceptibility Tests—Ninth Edition: Approved Standard M2-A9. 2006, Wayne, PA, USA: CLSI.
[21]
Fiebelkorn KR, Crawford SA, McElmeel ML, Jorgensen JH (2003) Practical disk diffusion method for detection of inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative staphylococci. J Clin Microbiol 41: 4740–4.
[22]
Kondo Y, Ito T, Ma XX, Watanabe S, Kreiswirth BN, et al. (2007) Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother 51: 264–74.
[23]
Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG (2000) Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38: 1008–15.
[24]
Tang CT, Nguyen DT, Ngo TH, Nguyen TM, Le VT, et al. (2007) An outbreak of severe infections with community-acquired MRSA carrying the Panton-Valentine leukocidin following vaccination. PLoS ONE 2: e822.
[25]
Sam IC, Kahar-Bador M, Chan YF, Loong SK, Mohd Nor Ghazali F (2008) Multisensitive community-acquired methicillin-resistant Staphylococcus aureus infections in Malaysia. Diagn Microbiol Infect Dis 62: 437–9.
[26]
Mekviwattanawong S, Srifuengfung S, Chokepaibulkit K, Lohsiriwat D, Thamlikitkul V (2006) Epidemiology of Staphylococcus aureus infections and the prevalence of infection caused by community-acquired methicillin-resistant Staphylococcus aureus in hospitalized patients at Siriraj Hospital. J Med Assoc Thai 89: Suppl 5S106–17.
[27]
Fishbain JT, Viscount HB (2002) Surveillance for methicillin-resistant Staphylococcus aureus in Battambang, Cambodia. Hawaii Med J 61: 231–2.
[28]
Gupta K, Macintyre A, Vanasse G, Dembry LM (2007) Trends in prescribing beta-lactam antibiotics for treatment of community-associated methicillin-resistant Staphylococcus aureus infections. J Clin Microbiol 45: 3930–4.
[29]
Hersh AL, Chambers HF, Maselli JH, Gonzales R (2008) National trends in ambulatory visits and antibiotic prescribing for skin and soft-tissue infections. Arch Intern Med 168: 1585–91.