Background The development of plasma biomarkers could facilitate early detection, risk assessment and therapeutic monitoring in Alzheimer's disease (AD). Alterations in ceramides and sphingomyelins have been postulated to play a role in amyloidogensis and inflammatory stress related neuronal apoptosis; however few studies have conducted a comprehensive analysis of the sphingolipidome in AD plasma using analytical platforms with accuracy, sensitivity and reproducibility. Methods and Findings We prospectively analyzed plasma from 26 AD patients (mean MMSE 21) and 26 cognitively normal controls in a non-targeted approach using multi-dimensional mass spectrometry-based shotgun lipidomics [1], [2] to determine the levels of over 800 molecular species of lipids. These data were then correlated with diagnosis, apolipoprotein E4 genotype and cognitive performance. Plasma levels of species of sphingolipids were significantly altered in AD. Of the 33 sphingomyelin species tested, 8 molecular species, particularly those containing long aliphatic chains such as 22 and 24 carbon atoms, were significantly lower (p<0.05) in AD compared to controls. Levels of 2 ceramide species (N16:0 and N21:0) were significantly higher in AD (p<0.05) with a similar, but weaker, trend for 5 other species. Ratios of ceramide to sphingomyelin species containing identical fatty acyl chains differed significantly between AD patients and controls. MMSE scores were correlated with altered mass levels of both N20:2 SM and OH-N25:0 ceramides (p<0.004) though lipid abnormalities were observed in mild and moderate AD. Within AD subjects, there were also genotype specific differences. Conclusions In this prospective study, we used a sensitive multimodality platform to identify and characterize an essentially uniform but opposite pattern of disruption in sphingomyelin and ceramide mass levels in AD plasma. Given the role of brain sphingolipids in neuronal function, our findings provide new insights into the AD sphingolipidome and the potential use of metabolomic signatures as peripheral biomarkers.
References
[1]
Han X, Gross RW (2005) Shotgun lipidomics: Electrospray ionization mass spectrometric analysis and quantitation of the cellular lipidomes directly from crude extracts of biological samples. Mass Spectrometry Reviews 24: 367–412.
[2]
Yang K, Cheng H, Gross RW, Han X (2009) Automated lipid identification and quantification by multi-dimensional mass spectrometry-based shotgun lipidomics. Anal Chem 81: 4356–4368.
[3]
Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer's disease. Alzheimers Dement 3: 186–191.
[4]
Schneider JA, Arvanitakis Z, Bang W, Bennett DA (2007) Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 69: 2197–2204.
[5]
Schneider JA, Aggarwal NT, Barnes L, Boyle P, Bennett DA (2009) The neuropathology of older persons with and without dementia from community versus clinic cohorts. J Alzheimers Dis 18: 691–701.
[6]
Jones L, Harold D, Williams J (2010) Genetic evidence for the involvement of lipid metabolism in Alzheimer's disease. Biochim Biophys Acta 1801: 754–761.
[7]
Viswanathan A, Rocca WA, Tzourio C (2009) Vascular risk factors and dementia: how to move forward? Neurology 72: 368–374.
[8]
Strittmatter WJ, Roses AD (1996) Apolipoprotein E and Alzheimer's disease. Annu Rev Neurosci 19: 53–77.
[9]
Mayeux R, Reitz C, Brickman AM, Haan MN, Manly JJ, et al. (2011) Operationalizing diagnostic criteria for Alzheimer's disease and other age-related cognitive impairment-Part 1. Alzheimers Dement 7: 15–34.
[10]
Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, et al. (2009) MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations. Neurology 73: 287–293.
[11]
De Meyer G, Shapiro F, Vanderstichele H, Vanmechelen E, Engelborghs S, et al. (2010) Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people. Arch Neurol 67: 949–956.
[12]
Kaddurah-Daouk R, Kristal BS, Weinshilboum RM (2008) Metabolomics: A Global Biochemical Approach to Drug Response and Disease. Annu Rev Pharmacol Toxicol 48: 653–683.
[13]
Kristal BS, Kaddurah-Daouk R, Beal MF, Matson WR (2007) Metabolomics: concept and potential neuroscience application. Handbook of Neurochemistry and Molecular Neurobiology: Brain Energetics Integration of Molecular and Cellular Processes. New York: Springer. pp. 889–912.
[14]
Lindon JC, Holmes E, Nicholson JK (2007) Metabonomics in pharmaceutical R&D. FEBS J 274: 1149–1151.
[15]
Ji Y, Hebbring S, Zhu H, Jenkins GD, Biernacka J, et al. (2011) Glycine and a glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response biomarkers in depression: pharmacometabolomics-informed pharmacogenomics. Clin Pharmacol Ther 89: 97–104.
[16]
Paige LA, Mitchell MW, Krishnan KR, Kaddurah-Daouk R, Steffens DC (2007) A preliminary metabolomic analysis of older adults with and without depression. Int J Geriatr Psychiatry 22: 418–423.
[17]
Steffens DC, Wei J, Krishnan KR, Karoly ED, Mitchell MW, et al. (2010) Metabolomic differences in heart failure patients with and without major depression. J Geriatr Psychiatry Neurol 23: 138–146.
[18]
Rozen S, Cudkowicz ME, Bogdanov M, Matson WR, Kristal BS, et al. (2005) Metabolomic analysis and signatures in motor neuron disease. Metabolomics 1: 101–108.
[19]
Bogdanov M, Matson WR, Wang L, Matson T, Saunders-Pullman R, et al. (2008) Metabolomic profiling to develop blood biomarkers for Parkinson's disease. Brain 131: 389–396.
[20]
Patkar AA, Rozen S, Mannelli P, Matson W, Pae CU, et al. (2009) Alterations in tryptophan and purine metabolism in cocaine addiction: a metabolomic study. Psychopharmacology (Berl) 206: 479–489.
[21]
Mannelli P, Patkar A, Rozen S, Matson W, Krishnan R, et al. (2009) Opioid use affects antioxidant activity and purine metabolism: preliminary results. Hum Psychopharmacol 24: 666–675.
[22]
Kaddurah-Daouk R, McEvoy J, Baillie RA, Lee D, Yao JK, et al. (2007) Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol Psychiatry 12: 934–945.
[23]
Yao JK, Dougherty GG Jr, Reddy RD, Keshavan MS, Montrose DM, et al. (2010) Altered interactions of tryptophan metabolites in first-episode neuroleptic-naive patients with schizophrenia. Mol Psychiatry 15: 938–953.
[24]
Yao JK, Dougherty GG Jr, Reddy RD, Keshavan MS, Montrose DM, et al. (2010) Homeostatic imbalance of purine catabolism in first-episode neuroleptic-naive patients with schizophrenia. PLoS One 5: e9508.
[25]
Kaddurah-Daouk R, Rozen S, Matson W, Han X, Hulette CM, et al. (2010) Metabolomic changes in autopsy-confirmed Alzheimer's disease. Alzheimers Dement.
[26]
Han X (2010) Multi-dimensional mass spectrometry-based shotgun lipidomics and the altered lipids at the mild cognitive impairment stage of Alzheimer's disease. Biochim Biophys Acta 1801: 774–783.
[27]
Han X (2005) Lipid alterations in the earliest clinically recognizable stage of Alzheimer's disease: implication of the role of lipids in the pathogenesis of Alzheimer's disease. Curr Alzheimer Res 2: 65–77.
[28]
Svennerholm L, Gottfries CG (1994) Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (type I) and demyelination in late-onset form (type II). Journal of Neurochemistry 62: 1039–1047.
[29]
Han X, Holtzman DM, McKeel DW Jr, Kelley J, Morris JC (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer's disease: potential role in disease pathogenesis. Journal of Neurochemistry 82: 809–818.
[30]
Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, et al. (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America 101: 2070–2075.
[31]
Klein J (2000) Membrane breakdown in acute and chronic neurodegeneration: Focus on choline-containing phospholipids. J Neural Transm 107: 1027–1063.
[32]
Han X, Holtzman DM, McKeel DW Jr (2001) Plasmalogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem 77: 1168–1180.
[33]
Mielke MM, Bandaru VV, Haughey NJ, Rabins PV, Lyketsos CG, et al. (2010) Serum sphingomyelins and ceramides are early predictors of memory impairment. Neurobiology of Aging 31: 17–24.
[34]
Christie WW, Han X (2010) Lipid Analysis: Isolation, Separation, Identification and Lipidomic Analysis. Bridgwater, England: The Oily Press. 428 p.
[35]
Jiang X, Cheng H, Yang K, Gross RW, Han X (2007) Alkaline methanolysis of lipid extracts extends shotgun lipidomics analyses to the low abundance regime of cellular sphingolipids. Analytical Biochemistry 371: 135–145.
[36]
Han X, Yang K, Gross RW (2008) Microfluidics-based electrospray ionization enhances intrasource separation of lipid classes and extends identification of individual molecular species through multi-dimensional mass spectrometry: Development of an automated high throughput platform for shotgun lipidomics. Rapid Communications in Mass Spectrometry 22: 2115–2124.
[37]
Han X, Yang J, Cheng H, Ye H, Gross RW (2004) Towards fingerprinting cellular lipidomes directly from biological samples by two-dimensional electrospray ionization mass spectrometry. Analytical Biochemistry 330: 317–331.
[38]
Han X, Yang K, Yang J, Fikes KN, Cheng H, et al. (2006) Factors influencing the electrospray intrasource separation and selective ionization of glycerophospholipids. J Am Soc Mass Spectrom 17: 264–274.
[39]
Han X, Gross RW (2001) Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem 295: 88–100.
[40]
Cheng H, Jiang X, Han X (2007) Alterations in lipid homeostasis of mouse dorsal root ganglia induced by apolipoprotein E deficiency: a shotgun lipidomics study. J Neurochem 101: 57–76.
[41]
Han X (2002) Characterization and direct quantitation of ceramide molecular species from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem 302: 199–212.
[42]
Yang K, Zhao Z, Gross RW, Han X (2009) Systematic analysis of choline-containing phospholipids using multi-dimensional mass spectrometry-based shotgun lipidomics. J Chromatogr B Analyt Technol Biomed Life Sci 877: 2924–2936.
[43]
Han X, Yang K, Cheng H, Fikes KN, Gross RW (2005) Shotgun lipidomics of phosphoethanolamine-containing lipids in biological samples after one-step in situ derivatization. J Lipid Res 46: 1548–1560.
[44]
R Development Core Team (2010) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
[45]
Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences, USA 100: 9440–9445.
[46]
Han X, Fagan AM, Cheng H, Morris JC, Xiong C, et al. (2003) Cerebrospinal fluid sulfatide is decreased in subjects with incipient dementia. Ann Neurol 54: 115–119.
[47]
Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, et al. (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. Journal of Lipid Research 51: 3299–3305.
[48]
Satoi H, Tomimoto H, Ohtani R, Kitano T, Kondo T, et al. (2005) Astroglial expression of ceramide in Alzheimer's disease brains: a role during neuronal apoptosis. Neuroscience 130: 657–666.
[49]
Katsel P, Li C, Haroutunian V (2007) Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer's disease: a shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer's disease? Neurochem Res 32: 845–856.
[50]
Pettegrew JW, Panchalingam K, Hamilton RL, McClure RJ (2001) Brain membrane phospholipid alterations in Alzheimer's disease. Neurochem Res 26: 771–782.
[51]
Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, et al. (2007) Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nature Medicine 13: 1359–1362.
Summers SA (2006) Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res 45: 42–72.
[54]
Ichi I, Nakahara K, Miyashita Y, Hidaka A, Kutsukake S, et al. (2006) Association of ceramides in human plasma with risk factors of atherosclerosis. Lipids 41: 859–863.
[55]
Nelson JC, Jiang XC, Tabas I, Tall A, Shea S (2006) Plasma sphingomyelin and subclinical atherosclerosis: findings from the multi-ethnic study of atherosclerosis. Am J Epidemiol 163: 903–912.
[56]
Nagata Y, Kobayashi H, Umeda M, Ohta N, Kawashima S, et al. (2006) Sphingomyelin levels in the plasma membrane correlate with the activation state of muscle satellite cells. J Histochem Cytochem 54: 375–384.