All Title Author
Keywords Abstract

PLOS ONE  2012 

Prevalence and Genetic Characterization of Pertactin-Deficient Bordetella pertussis in Japan

DOI: 10.1371/journal.pone.0031985

Full-Text   Cite this paper   Add to My Lib

Abstract:

The adhesin pertactin (Prn) is one of the major virulence factors of Bordetella pertussis, the etiological agent of whooping cough. However, a significant prevalence of Prn-deficient (Prn?) B. pertussis was observed in Japan. The Prn? isolate was first discovered in 1997, and 33 (27%) Prn? isolates were identified among 121 B. pertussis isolates collected from 1990 to 2009. Sequence analysis revealed that all the Prn? isolates harbor exclusively the vaccine-type prn1 allele and that loss of Prn expression is caused by 2 different mutations: an 84-bp deletion of the prn signal sequence (prn1ΔSS, n = 24) and an IS481 insertion in prn1 (prn1::IS481, n = 9). The frequency of Prn? isolates, notably those harboring prn1ΔSS, significantly increased since the early 2000s, and Prn? isolates were subsequently found nationwide. Multilocus variable-number tandem repeat analysis (MLVA) revealed that 24 (73%) of 33 Prn? isolates belong to MLVA-186, and 6 and 3 Prn? isolates belong to MLVA-194 and MLVA-226, respectively. The 3 MLVA types are phylogenetically closely related, suggesting that the 2 Prn? clinical strains (harboring prn1ΔSS and prn1::IS481) have clonally expanded in Japan. Growth competition assays in vitro also demonstrated that Prn? isolates have a higher growth potential than the Prn+ back-mutants from which they were derived. Our observations suggested that human host factors (genetic factors and immune status) that select for Prn? strains have arisen and that Prn expression is not essential for fitness under these conditions.

References

[1]  von K?nig CH, Halperin S, Riffelmann M, Guiso N (2002) Pertussis of adults and infants. Lancet Infect Dis 2: 744–750.
[2]  Hewlett EL, Edwards KM (2005) Clinical practice. Pertussis–not just for kids. N Engl J Med 352: 1215–1222.
[3]  Okada K, Komiya T, Yamamoto A, Takahashi M, Kamachi K, et al. (2010) Safe and effective booster immunization using DTaP in teenagers. Vaccine 28: 7626–7633.
[4]  Cherry JD (1997) Comparative efficacy of acellular pertussis vaccines: an analysis of recent trials. Pediatr Infect Dis J 16: S90–96.
[5]  Olin P, Rasmussen F, Gustafsson L, Hallander HO, Heijbel H (1997) Randomised controlled trial of two-component, three-component, and five-component acellular pertussis vaccines compared with whole-cell pertussis vaccine. Lancet 350: 1569–1577.
[6]  Gustafsson L, Hallander HO, Olin P, Reizenstein E, Storsaeter J (1996) A controlled trial of a two-component acellular, a five-component acellular, and a whole-cell pertussis vaccine. N Eng J Med 334: 349–355.
[7]  Hellwig SM, Rodriguez ME, Berbers GA, van de Winkel JG, Mooi FR (2003) Crucial role of antibodies to pertactin in Bordetella pertussis immunity. J Infect Dis 188: 738–742.
[8]  Henderson IR, Navarro-Garcia F, Nataro JP (1998) The great escape: structure and function of the autotransporter proteins. Trends Microbiol 6: 370–378.
[9]  Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala'Aldeen D (2004) Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68: 692–744.
[10]  Junker M, Schuster CC, McDonnell AV, Sorg KA, Finn MC, et al. (2006) Pertactin beta-helix folding mechanism suggests common themes for the secretion and folding of autotransporter proteins. Proc Natl Acad Sci U S A 103: 4918–4923.
[11]  Hynes RO (1987) Integrins: a family of cell surface receptors. Cell 48: 549–554.
[12]  Doulatov S, Hodes A, Dai L, Mandhana N, Liu M, et al. (2004) Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431: 476–481.
[13]  Miller JL, Le Coq J, Hodes A, Barbalat R, Miller JF, et al. (2008) Selective ligand recognition by a diversity-generating retroelement variable protein. PLoS Biol 6: e131.
[14]  Mooi FR, van Oirschot H, Heuvelman K, van der Heide HG, Gaastra W, et al. (1998) Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in The Netherlands: temporal trends and evidence for vaccine-driven evolution. Infect Immun 66: 670–675.
[15]  Kallonen T, He Q (2009) Bordetella pertussis strain variation and evolution postvaccination. Expert Rev Vaccines 8: 863–875.
[16]  Mooi FR (2010) Bordetella pertussis and vaccination: the persistence of a genetically monomorphic pathogen. Infect Genet Evol 10: 36–49.
[17]  Kodama A, Kamachi K, Horiuchi Y, Konda T, Arakawa Y (2004) Antigenic divergence suggested by correlation between antigenic variation and pulsed-field gel electrophoresis profiles of Bordetella pertussis isolates in Japan. J Clin Microbiol 42: 5453–5457.
[18]  van Gent M, van Loo IHM, Heuvelman KJ, de Neeling AJ, Teunis P, et al. (2011) Studies on Prn variation in the mouse model and comparison with epidemiological data. PLoS One 6: e18014.
[19]  Mastrantonio P, Spigaglia P, van Oirschot H, van der Heide HG, Heuvelman K, et al. (1999) Antigenic variants in Bordetella pertussis strains isolated from vaccinated and unvaccinated children. Microbiology 145: 2069–2075.
[20]  Bouchez V, Brun D, Cantinelli T, Dore G, Njamkepo E, et al. (2009) First report and detailed characterization of B. pertussis isolates not expressing pertussis toxin or pertactin. Vaccine 27: 6034–6041.
[21]  Caro V, Hot D, Guigon G, Hubans C, Arrivé M, et al. (2006) Temporal analysis of French Bordetella pertussis isolates by comparative whole-genome hybridization. Microbes Infect 8: 2228–2235.
[22]  Heikkinen E, Kallonen T, Saarinen L, Sara R, King AJ, et al. (2007) Comparative genomics of Bordetella pertussis reveals progressive gene loss in Finnish strains. PLoS One 2: e904.
[23]  Kurniawan J, Maharjan RP, Chan WF, Reeves PR, Sintchenko V, et al. (2010) Bordetella pertussis clones identified by multilocus variable-number tandem-repeat analysis. Emerg Infect Dis 16: 297–300.
[24]  Stibitz S (1998) IS481 and IS1002 of Bordetella pertussis create a 6-base-pair duplication upon insertion at a consensus target site. J Bacteriol 180: 4963–4966.
[25]  Bouchez V, Caro V, Levillain E, Guigon G, Guiso N (2008) Genomic content of Bordetella pertussis clinical isolates circulating in areas of intensive children vaccination. PLoS One 3: e2437.
[26]  Roberts M, Fairweather NF, Leininger E, Pickard D, Hewlett EL, et al. (1991) Construction and characterization of Bordetella pertussis mutants lacking the vir-regulated P.69 outer membrane protein. Mol Microbiol 5: 1393–1404.
[27]  Leininger E, Roberts M, Kenimer JG, Charles IG, Fairweather N, et al. (1991) Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc Natl Acad Sci U S A 88: 345–349.
[28]  Leininger E, Ewanowich CA, Bhargava A, Peppler MS, Kenimer JG, et al. (1992) Comparative roles of the Arg-Gly-Asp sequence present in the Bordetella pertussis adhesins pertactin and filamentous hemagglutinin. Infect Immun 60: 2380–2385.
[29]  van den Berg BM, Beekhuizen H, Mooi FR, van Furth R (1999) Role of antibodies against Bordetella pertussis virulence factors in adherence of Bordetella pertussis and Bordetella parapertussis to human bronchial epithelial cells. Infect Immun 67: 1050–1055.
[30]  Stefanelli P, Fazio C, Fedele G, Spensieri F, Ausiello CM, et al. (2009) A natural pertactin deficient strain of Bordetella pertussis shows improved entry in human monocyte-derived dendritic cells. New Microbiol 32: 159–166.
[31]  Inatsuka CS, Xu Q, Vujkovic-Cvijin I, Wong S, Stibitz S, et al. (2010) Pertactin is required for Bordetella species to resist neutrophil-mediated clearance. Infect Immun 78: 2901–2909.
[32]  Nicholson TL, Brockmeier SL, Loving CL (2009) Contribution of Bordetella bronchiseptica filamentous hemagglutinin and pertactin to respiratory disease in swine. Infect Immun 77: 2136–2146.
[33]  Bouchez VC, Brun D, Dore GC, Njamkepo E, Guiso N (2011) Bordetella parapertussis isolates not expressing pertactin circulating in France. Clin Microbiol Infect 17: 675–682.
[34]  Greco D, Salmaso S, Mastrantonio P, Giuliano M, Tozzi AE, et al. (1996) A controlled trial of two acellular vaccines and one whole-cell vaccine against pertussis. N Engl J Med 334: 341–348.
[35]  Storsaeter J, Hallander HO, Gustafsson L, Olin P (1998) Levels of anti-pertussis antibodies related to protection after household exposure to Bordetella pertussis. Vaccine 16: 1907–1916.
[36]  Mooi FR, van Loo IH, van Gent M, He Q, Bart MJ, et al. (2009) Bordetella pertussis strains with increased toxin production associated with pertussis resurgence. Emerg Infect Dis 15: 1206–1213.
[37]  Han H-J, Kamachi K, Okada K, Toyoizumi-Ajisaka H, Sasaki Y, et al. (2008) Antigenic variation in Bordetella pertussis isolates recovered from adults and children in Japan. Vaccine 26: 1530–1534.
[38]  Aoyama T, Murase Y, Iwata T, Imaizumi A, Suzuki Y, et al. (1998) Comparison of blood-free medium (cyclodextrin solid medium) with Bordet-Gengou medium for clinical isolation of Bordetella pertussis. J Clin Microbiol 23: 1046–1048.
[39]  Mooi FR, Hallander H, Wirsing von Konig CH, Hoet B, Guiso N (2000) Epidemiological typing of Bordetella pertussis isolates: recommendations for a standard methodology. Eur J Clin Microbiol Infect Dis 19: 174–181.
[40]  Bassinet L, Gueirard P, Maitre B, Housset B, Gounon P, et al. (2000) Role of adhesins and toxins in invasion of human tracheal epithelial cells by Bordetella pertussis. Infect Immun 68: 1934–1941.
[41]  Cassiday P, Sanden G, Heuvelman K, Mooi F, Bisgard KM, et al. (2000) Polymorphism in Bordetella pertussis pertactin and pertussis toxin virulence factors in the United States, 1935–1999. J Infect Dis 182: 1402–1408.
[42]  Schouls LM, van der Heide HG, Vauterin L, Vauterin P, Mooi FR (2004) Multiple-locus variable-number tandem repeat analysis of Dutch Bordetella pertussis strains reveals rapid genetic changes with clonal expansion during the late 1990s. J Bacteriol 186: 5496–5505.
[43]  Litt DJ, Neal SE, Fry NK (2009) Changes in genetic diversity of the Bordetella pertussis population in the United Kingdom between 1920 and 2006 reflect vaccination coverage and emergence of a single dominant clonal type. J Clin Microbiol 47: 680–688.
[44]  Han H-J, Kuwae A, Abe A, Arakawa Y, Kamachi K (2011) Differential expression of type III effector BteA protein due to IS481 insertion in Bordetella pertussis. PLoS ONE 6: e17797.
[45]  Sekiya K, Ohishi M, Ogino T, Tamano K, Sasakawa C, et al. (2001) Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc Natl Acad Sci U S A 98: 11638–11643.
[46]  Pradel E, Guiso N, Menozzi FD, Locht C (2000) Bordetella pertussis TonB, a Bvg-independent virulence determinant. Infect Immun 68: 1919–1927.

Full-Text

comments powered by Disqus