Background Healthy lifestyle including sufficient physical activity may mitigate or prevent adverse long-term effects of childhood cancer. We described daily physical activities and sports in childhood cancer survivors and controls, and assessed determinants of both activity patterns. Methodology/Principal Findings The Swiss Childhood Cancer Survivor Study is a questionnaire survey including all children diagnosed with cancer 1976–2003 at age 0–15 years, registered in the Swiss Childhood Cancer Registry, who survived ≥5years and reached adulthood (≥20years). Controls came from the population-based Swiss Health Survey. We compared the two populations and determined risk factors for both outcomes in separate multivariable logistic regression models. The sample included 1058 survivors and 5593 controls (response rates 78% and 66%). Sufficient daily physical activities were reported by 52% (n = 521) of survivors and 37% (n = 2069) of controls (p<0.001). In contrast, 62% (n = 640) of survivors and 65% (n = 3635) of controls reported engaging in sports (p = 0.067). Risk factors for insufficient daily activities in both populations were: older age (OR for ≥35years: 1.5, 95CI 1.2–2.0), female gender (OR 1.6, 95CI 1.3–1.9), French/Italian Speaking (OR 1.4, 95CI 1.1–1.7), and higher education (OR for university education: 2.0, 95CI 1.5–2.6). Risk factors for no sports were: being a survivor (OR 1.3, 95CI 1.1–1.6), older age (OR for ≥35years: 1.4, 95CI 1.1–1.8), migration background (OR 1.5, 95CI 1.3–1.8), French/Italian speaking (OR 1.4, 95CI 1.2–1.7), lower education (OR for compulsory schooling only: 1.6, 95CI 1.2–2.2), being married (OR 1.7, 95CI 1.5–2.0), having children (OR 1.3, 95CI 1.4–1.9), obesity (OR 2.4, 95CI 1.7–3.3), and smoking (OR 1.7, 95CI 1.5–2.1). Type of diagnosis was only associated with sports. Conclusions/Significance Physical activity levels in survivors were lower than recommended, but comparable to controls and mainly determined by socio-demographic and cultural factors. Strategies to improve physical activity levels could be similar as for the general population.
References
[1]
Gatta G, Zigon G, Capocaccia R, Coebergh JW, Desandes E, et al. (2009) Survival of European children and young adults with cancer diagnosed 1995–2002. European Journal of Cancer 45: 992–1005.
[2]
Jemal A, Siegel R, Xu J, Ward E (2010) Cancer Statistics, 2010. CA Cancer J Clin 60: 277–300.
[3]
Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, et al. (2006) Chronic Health Conditions in Adult Survivors of Childhood Cancer. New England Journal of Medicine 355: 1572–1582.
[4]
Alvarez JA, Scully RE, Miller TL, Armstrong FD, Constine LS, et al. (2007) Long-term effects of treatments for childhood cancers. Current Opinion in Pediatrics 19: 23–31.
[5]
Diller L, Chow EJ, Gurney JG, Hudson MM, Kadin-Lottick NS, et al. (2009) Chronic Disease in the Childhood Cancer Survivor Study Cohort: A Review of Published Findings. Journal of Clinical Oncology 27: 2339–2355.
[6]
Mertens AC, Liu Q, Neglia JP (2008) Cause-specific late mortality among 5-year survivors of childhood cancer: the Childhood Cancer Survivor Study. J Natl Cancer Inst 100: 1368–1379.
[7]
Reulen RC, Winter DL, Frobisher C, Lancashire ER, Stiller CA, et al. (2010) Long-term Cause-Specific Mortality Among Survivors of Childhood Cancer. JAMA: The Journal of the American Medical Association 304: 172–179.
[8]
San Juan AF, Chamorro-Vi?a C, Maté-Mu?oz JL, Fernández del Valle M, Cardona C, et al. (2008) Functional capacity of children with leukemia. Int J Sports Med 29: 163–167.
[9]
Blaauwbroek R, Bouma M, Tuinier W, Groenier K, de Greef M, et al. (2009) The effect of exercise counselling with feedback from a pedometer on fatigue in adult survivors of childhood cancer: a pilot study. Supportive Care in Cancer 17: 1041–1048.
[10]
Hartman A, Winkel MLt, Beek RDv, Keizer-Schrama SMPFdM, Kemper HCG, et al. (2009) A randomized trial investigating an exercise program to prevent reduction of bone mineral density and impairment of motor performance during treatment for childhood acute lymphoblastic leukemia. Pediatric Blood & Cancer 53: 64–71.
[11]
Mayer EIE, Reuter M, Dopfer RE, Ranke MB (2000) Energy Expenditure, Energy Intake and Prevalence of Obesity after Therapy for Acute Lymphoblastic Leukemia during Childhood. Hormone Research in Paediatrics 53: 193–199.
[12]
Meacham LR, Chow EJ, Ness KK, Kamdar KY, Chen Y, et al. (2010) Cardiovascular Risk Factors in Adult Survivors of Pediatric Cancer—A Report from the Childhood Cancer Survivor Study. Cancer Epidemiology Biomarkers & Prevention 19: 170–181.
[13]
San Juan AF, Fleck SJ, Chamorro-Vi?a C, Maté-Mu?oz JL, Moral S, et al. (2007) Effects of an intrahospital exercise program intervention for children with leukemia. Med Sci Sports Exerc 39: 13–21.
[14]
San Juan AF, Wolin K, Lucía A (2011) Physical Activity and Pediatric Cancer Survivorship. Recent Results Cancer Res 186: 319–347.
[15]
Tillmann V, Darlington ASE, Eiser C, Bishop NJ, Davies HA (2002) Male Sex and Low Physical Activity Are Associated With Reduced Spine Bone Mineral Density in Survivors of Childhood Acute Lymphoblastic Leukemia. Journal of Bone and Mineral Research 17: 1073–1080.
[16]
van Brussel M, van der Net J, Hulzebos E, Helders PJM, Takken T (2011) The Utrecht Approach to Exercise in Chronic Childhood Conditions: The Decade in Review. Pediatric Physical Therapy 23: 2–14.
[17]
Demark-Wahnefried W, Aziz NM, Rowland JH, Pinto BM (2005) Riding the Crest of the Teachable Moment: Promoting Long-Term Health After the Diagnosis of Cancer. J Clin Oncol 23: 5814–5830.
[18]
Speck R, Courneya K, Masse L, Duval S, Schmitz K (2010) An update of controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. Journal of Cancer Survivorship 4: 87–100.
[19]
Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvao DA, et al. (2010) American College of Sports Medicine Roundtable on Exercise Guidelines for Cancer Survivors. Medicine & Science in Sports & Exercise 42: 1409–1426.
[20]
Naylor AS, Bull C, Nilsson MKL, Zhu C, Bj?rk-Eriksson T, et al. (2008) Voluntary running rescues adult hippocampal neurogenesis after irradiation of the young mouse brain. Proceedings of the National Academy of Sciences 105: 14632–14637.
[21]
Haskell WL, Lee IM, Pate RR, Powel KE, Bair SN, et al. (2007) Physical Activity and Public Health: Updated Recommendation for Adults from the American College of Sports Medicine and the American Heart Association. Medicine & Science in Sports & Exercise 39: 1423–1434.
[22]
Samitz G, Egger M, Zwahlen M (2011) Domains of physical activity and all-cause mortality: systematic review and dose–response meta-analysis of cohort studies. International Journal of Epidemiology 40: 1382–1400.
[23]
Stolley M, Restrepo J, Sharp L (2010) Diet and Physical Activity in Childhood Cancer Survivors: A Review of the Literature. Annals of Behavioral Medicine 39: 232–249.
[24]
Florin TA, Fryer GE, Miyoshi T, Weitzman M, Mertens AC, et al. (2007) Physical Inactivity in Adult Survivors of Childhood Acute Lymphoblastic Leukemia: A Report from the Childhood Cancer Survivor Study. Cancer Epidemiology Biomarkers & Prevention 16: 1356–1363.
[25]
Ness KK, Leisenring WM, Huang S, Hudson MM, Gurney JG, et al. (2009) Predictors of inactive lifestyle among adult survivors of childhood cancer. Cancer 115: 1984–1994.
[26]
Finnegan L, Wilkie D, Wilbur J, Campbell R, Zong S, et al. (2007) Correlates of Physical Activity in Young Adult Survivors of Childhood Cancers. Oncology Nursing Forum 34: E60–E69.
[27]
Reeves M, Eakin EG, Lawler S, Demark-Wahnefried W (2007) Health behaviours in survivors of childhood cancer. Australian Family Physician 36: 95–96.
[28]
Demark-Wahnefried W, Werner C, Clipp EC, Guill AB, Bonner M, et al. (2005) Survivors of childhood cancer and their guardians. Cancer 103: 2171–2180.
[29]
Cox CL, Montgomery M, Oeffinger KC, Leisenring W, Zeltzer L, et al. (2009) Promoting physical activity in childhood cancer survivors. Cancer 115: 642–654.
[30]
J?rvel? LS, Niinikoski H, L?hteenm?ki PM, Heinonen OJ, Kapanen J, et al. (2010) Physical activity and fitness in adolescent and young adult long-term survivors of childhood acute lymphoblastic leukaemia. J Cancer Surviv 4: 339–345.
[31]
Kuehni CE, Rueegg CS, Michel G, Rebholz CE, Strippoli MPF, et al. (2011) Cohort profile: The Swiss Childhood Cancer Survivor Study. International Journal of Epidemiology. doi:10.1093/ije/dyr1142.
[32]
Michel G, von der Weid NX, Zwahlen M, Adam M, Rebholz CE, et al. (2007) The Swiss Childhood Cancer Registry: rationale, organisation and results for the years 2001–2005. Swiss Medical Weekly 137: 502–509.
[33]
Feller M, Adam M, Zwahlen M, Brazzola P, Niggli F, et al. (2010) Family Characteristics as Risk Factors for Childhood Acute Lymphoblastic Leukemia: A Population-Based Case-Control Study. PLoS ONE 5: e13156.
[34]
Robison LL, Mertens AC, Boice JD (2002) Study design and cohort characteristics of the Childhood Cancer Survivor Study: a multi-institutional collaborative project. Med Pediatr Oncol 38: 229–239.
[35]
Hawkins M, Lancashire E, Winter D, Frobisher C, Reulen R, et al. (2008) The British Childhood Cancer Survivor Study: Objectives, methods, population structure, response rates and initial descriptive information. Pediatric Blood & Cancer 50: 1018–1025.
[36]
Liebherr R, Marquis J, Storni M, Wiedenmayer G (2010) Gesundheit und Gesundheitsverhalten in der Schweiz 2007 - Schweizerische Gesundheitsbefragung. Neuchatel: Bundesamt für Statistik.
[37]
Germann U (2005) Abschlussbericht zur Volksz?hlung 2000. Neuchatel: Bundesamt für Statistik.
[38]
Godin G, Jobin J, Bouillon J (1986) Assessement of leisure time exercise behavior by self-report: a concurrent validity study. Can J Public Health 77: 359–362.
[39]
M?der U, Martin BW, Schutz Y, Marti B (2006) Validity of Four Short Physical Activity Questionnaires in Middle-Aged Persons. Medicine & Science in Sports & Exercise 38: 1255–1266.
[40]
Kuehni CE, Strippoli MPF, Rueegg CS, Rebholz CE, Bergstraesser E, et al. (2012) Educational achievement in Swiss childhood cancer survivors compared with the general population. Cancer 118: 1439–1449.
[41]
World Health Organization (1995) Physical status: The use and interpretation of anthropometry. Geneva, Switzerland: World Health Organization.
[42]
Steliarova-Foucher E, Stiller C, Lacour B, Kaatsch P (2005) International Classification of Childhood Cancer, third edition. Cancer 103: 1457–1467.
[43]
Westerterp K (2009) Assessment of physical activity: a critical appraisal. European Journal of Applied Physiology 105: 823–828.
[44]
Wynder EL, Higgins IT, Harris RE (1990) The wish bias. Journal of Clinical Epidemiology 43: 619–621.
[45]
M?kinen T, Kestil? L, Borodulin K, Martelin T, Rahkonen O, et al. (2010) Effects of childhood socio-economic conditions on educational differences in leisure-time physical activity. The European Journal of Public Health 20: 346–353.
[46]
Ness KK, Hudson MM, Ginsberg JP, Nagarajan R, Kaste SC, et al. (2009) Physical Performance Limitations in the Childhood Cancer Survivor Study Cohort. Journal of Clinical Oncology 27: 2382–2389.
[47]
Thornton J (1997) Overcoming the protected child syndrome: Kids, exercise and chronic illness. Physician Sportsmed 25: 97–100.
[48]
San Juan AF, Chamorro-Vi?a C, Moral S, Fernández del Valle M, Madero L, et al. (2008) Benefits of Intrahospital Exercise Training after Pediatric Bone Marrow Transplantation. Int J Sports Med 29: 439–446.
[49]
Barr-Anderson DJ, AuYoung M, Whitt-Glover MC, Glenn BA, Yancey AK (2011) Integration of Short Bouts of Physical Activity Into Organizational Routine: A Systematic Review of the Literature. American Journal of Preventive Medicine 40: 76–93.
[50]
US Department of Health and Human Services (2000) Healthy people 2010. Washington, DC: Government Printing Office.
[51]
US Department of Health and Human Services (1996) Physical Activity and Health: A Report of the Surgeon General. Washington, DC: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion.
[52]
Winter C, Müller C, Hoffmann C, Boos J, Rosenbaum D (2009) Physical activity and childhood cancer. Pediatric Blood & Cancer 54: 501–510.
[53]
Oeffinger K, Hudson MM (2004) Long term complications following childhood and adolescent cancer: foundations for providing the risk based health care for survivors. CA Cancer J Clin 54: 208–236.
[54]
Butterfield RM, Park ER, Puleo E, Mertens A, Gritz ER, et al. (2004) Multiple risk behaviors among smokers in the childhood cancer survivors study cohort. Psycho-Oncology 13: 619–629.