[1] | Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138: 3639–3646.
|
[2] | Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138: 3625–3637.
|
[3] | Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, et al. (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138: 3647–3656.
|
[4] | Moss FP, Leblond CP (1970) Nature of dividing nuclei in skeletal muscle of growing rats. J Cell Biol 44: 459–462.
|
[5] | Moss FP, Leblond CP (1971) Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170: 421–435.
|
[6] | Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, et al. (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166: 347–357.
|
[7] | Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, et al. (2005) Stem cell function, self-renewal, and behavioural heterogeneity of cells from the adult muscle satellite cell niche. Cell 122: 289–301.
|
[8] | Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456: 502–506.
|
[9] | Boldrin L, Zammit PS, Muntoni F, Morgan JE (2009) Mature adult dystrophic mouse muscle environment does not impede efficient engrafted satellite cell regeneration and self-renewal. Stem Cells 27: 2478–2487.
|
[10] | Collins CA, Zammit PS, Ruiz AP, Morgan JE, Partridge TA (2007) A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 25: 885–894.
|
[11] | Rowe RW, Goldspink G (1969) Muscle fibre growth in five different muscles in both sexes of mice. J Anat 104: 519–530.
|
[12] | Miller AE, MacDougall JD, Tarnopolsky MA, Sale DG (1993) Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol 66: 254–262.
|
[13] | MacLean HE, Chiu WSM, Notini AJ, Axell A-M, Davey RA, et al. (2008) Impaired skeletal muscle development and function in male, but not female, genomic androgen receptor knockout mice. FASEB J 22: 2676–2689.
|
[14] | Mulvaney DR, Marple DN, Merkel RA (1988) Proliferation of skeletal muscle satellite cells after castration and administration of testosterone propionate. Proc Soc Exp Biol Med 188: 40–45.
|
[15] | Joubert Y, Tobin C (1989) Satellite cell proliferation and increase in the number of myonuclei induced by testosterone in the levator ani muscle of the adult female rat. Dev Biol 131: 550–557.
|
[16] | Sinha-Hikim I, Roth SM, Lee MI, Bhasin S (2003) Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. Am J Physiol Endocrinol Metab 285: E197–205.
|
[17] | Joubert Y, Tobin C (1995) Testosterone Treatment Results in Quiescent Satellite Cells Being Activated and Recruited into Cell Cycle in Rat Levator Ani Muscle. Dev Biol 169: 286–294.
|
[18] | Manzano R, Toivonen JM, Calvo AC, Miana-Mena FJ, Zaragoza P, et al. (2011) Sex, fiber-type and age dependent in vitro proliferation of mouse muscle satellite cells. J Cell Biochem 112: 2825–36.
|
[19] | Deasy BM, Lu A, Tebbets JC, Feduska JM, Schugar RC, et al. (2007) A role for cell sex in stem cell–mediated skeletal muscle regeneration: female cells have higher muscle regeneration efficiency. J Cell Biol 177: 73–86.
|
[20] | Gros J, Manceau M, Thomé V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435: 954–958.
|
[21] | Buckingham M, Relaix F (2007) The Role of Pax Genes in the Development of Tissues and Organs: Pax3 and Pax7 Regulate Muscle Progenitor Cell Functions. Annu Rev Cell Dev Biol 23: 645–673.
|
[22] | White RB, Biérinx AS, Gnocchi VF, Zammit PS (2010) Dynamics of muscle fibre growth during postnatal mouse development. BMC Dev Biol 10: 21, 2010.
|
[23] | Blaveri K, Heslop L, Yu DS, Rosenblatt JD, Gross JG, et al. (1999) Patterns of repair of dystrophic mouse muscle: studies on isolated fibers. Dev Dyn 216: 244–256.
|
[24] | Wang YX, Rudnicki MA (2011) Satellite cells, the engines of muscle repair. Nat Rev Mol Cell Biol 13: 127–133.
|
[25] | Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54: 1177–1191.
|
[26] | Horsley V, Friday BB, Matteson S, Kegley KM, Gephart J, et al. (2001) Regulation of the growth of multinucleated muscle cells by an NFATC2-dependent pathway. J Cell Biol 153: 329–338.
|
[27] | Jansen KM, Pavlath GK (2006) Mannose Receptor Regulates Myoblast Motility and Muscle Growth. J Cell Biol 174: 403–413.
|
[28] | Lepper C, Conway SJ, Fan C-M (2009) Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 460: 627–631.
|
[29] | Meadows E, Cho JH, Flynn JM, Klein WH (2008) Myogenin regulates a distinct genetic program in adult muscle stem cells. Dev Biol 322: 406–414.
|
[30] | O'Connor RS, Pavlath GK (2007) Point:Counterpoint: Satellite cell addition is/is not obligatory for skeletal muscle hypertrophy. J Appl Physiol 103: 1099–1100.
|
[31] | Roy RR, Monke SR, Allen DL, Edgerton VR (1999) Modulation of myonuclear number in functionally overloaded and exercised rat plantaris fibers. J Appl Physiol 87: 634–642.
|
[32] | Mitchell PO, Pavlath GK (2001) A muscle precursor cell-dependent pathway contributes to muscle growth after atrophy. Am J Physiol, Cell Physiol 281: C1706–1715.
|
[33] | Rosenblatt JD, Parry DJ (1992) Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus muscle. J Appl Physiol 73: 2538–2543.
|
[34] | Rosenblatt JD, Yong D, Parry DJ (1994) Satellite cell activity is required for hypertrophy of overloaded adult rat muscle. Muscle Nerve 17: 608–613.
|
[35] | McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, et al. (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138: 3657–3666.
|
[36] | Cheek DB, Powell GK, Scott RE (1965) Growth of Muscle Mass and Skeletal Collagen in the Rat. I. Normal Growth. Bull Johns Hopkins Hosp 116: 378–387.
|
[37] | Aravamudan B, Mantilla CB, Zhan W-Z, Sieck GC (2006) Denervation effects on myonuclear domain size of rat diaphragm fibers. J Appl Physiol 100: 1617–1622.
|
[38] | Rehfeldt C, Schadereit R, Weikard R, Reichel K (1997) Effect of clenbuterol on growth, carcase and skeletal muscle characteristics in broiler chickens. Br Poult Sci 38: 366–373.
|
[39] | Verheul AJ, Mantilla CB, Zhan W-Z, Bernal M, Dekhuijzen PNR, et al. (2004) Influence of corticosteroids on myonuclear domain size in the rat diaphragm muscle. J Appl Physiol 97: 1715–1722.
|
[40] | Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302: 1575–1577.
|
[41] | Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, et al. (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433: 760–764.
|
[42] | Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM (1989) Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 337: 176–179.
|
[43] | Morgan JE, Gross JG, Pagel CN, Beauchamp JR, Fassati A, et al. (2002) Myogenic cell proliferation and generation of a reversible tumorigenic phenotype are triggered by preirradiation of the recipient site. J Cell Biol 157: 693–702.
|
[44] | Heslop L, Beauchamp JR, Tajbakhsh S, Buckingham ME, Partridge TA, et al. (2001) Transplanted primary neonatal myoblasts can give rise to functional satellite cells as identified using the Myf5nlacZ/+ mouse. Gene ther 8: 778–783.
|
[45] | Mitchell KJ, Pannérec A, Cadot B, Parlakian A, Besson V, et al. (2010) Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nature Cell Biol 12: 257–66.
|
[46] | Schultz E (1976) Fine structure of satellite cells in growing skeletal muscle. Am J Anat 147: 49–70.
|
[47] | Brack AS, Bildsoe H, Hughes SM (2005) Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. J Cell Sci 118: 4813–4821.
|
[48] | Day K, Shefer G, Shearer A, Yablonka-Reuveni Z (2010) The depletion of skeletal muscle satellite cells with age is concomitant with reduced capacity of single progenitors to produce reserve progeny. Dev Biol 340: 330–343.
|
[49] | Shefer G, Rauner G, Yablonka-Reuveni Z, Benayahu D (2010) Reduced Satellite Cell Numbers and Myogenic Capacity in Aging Can Be Alleviated by Endurance Exercise. PLoS ONE 12;5: e13307.
|
[50] | Hall JK, Banks GB, Chamberlain JS, Olwin BB (2010) Prevention of Muscle Aging by Myofiber-Associated Satellite Cell Transplantation. Sci Transl Med 2: 57.
|
[51] | Carlson ME, Hsu M, Conboy IM (2008) Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 454: 528–532.
|
[52] | Morgan JE, Gross JG, Pagel CN, Beauchamp JR, Fassati A, et al. (2002) Myogenic cell proliferation and generation of a reversible tumorigenic phenotype are triggered by preirradiation of the recipient site. J Cell Biol 157: 693–702.
|
[53] | MacLennan MB, Anderson BM, Ma DWL (2011) Differential Mammary Gland Development in FVB and C57Bl/6 Mice: Implications for Breast Cancer Research. Nutrients 3: 929–936.
|
[54] | Nelson JF, Latham KR, Finch CE (1975) Plasma testosterone levels in C57BL/6J male mice: effects of age and disease. Acta Endocrinol 80: 744–752.
|
[55] | Biressi S, Rando TA (2010) Heterogeneity in the muscle satellite cell population. Semin Cell Dev Biol 21: 845–854.
|
[56] | Rocheteau P, Gayraud-Morel B, Siegl-Cachedenier I, Blasco MA, Tajbakhsh S (2012) A Subpopulation of Adult Skeletal Muscle Stem Cells Retains All Template DNA Strands after Cell Division. Cell 148: 112–125.
|
[57] | Ishido M, Uda M, Kasuga N, Masuhara M (2009) The expression patterns of Pax7 in satellite cells during overload-induced rat adult skeletal muscle hypertrophy. Acta Physiol 195: 459–469.
|
[58] | Westerkamp CM, Gordon SE (2005) Angiotensin-converting enzyme inhibition attenuates myonuclear addition in overloaded slow-twitch skeletal muscle. Am J Physiol Regul Integr Comp Physiol 289: R1223–1231.
|
[59] | Collins CA, Zammit PS (2009) Isolation and grafting of single muscle fibres. Methods Mol Biol 482: 319–330.
|
[60] | Lu QL, Rabinowitz A, Chen YC, Yokota T, Yin H, et al. (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A 102: 198–203.
|