[1]  Zuckerkandl E, Pauling L, Bryson V, Vogel HJ (1965) Evolutionary divergence and convergence in proteins. Evolving genes and proteins. New York: Academic Press. pp. 97–166.

[2]  Felsenstein J (2003) Inferring phylogenies. Sunderland, Massachusets: Sinauer.

[3]  Bromham L, Penny D (2003) The modern molecular clock. Nat Rev Genet 4: 216–224.

[4]  Kishino H, Hasegawa M (1990) Converting distance to time: application to human evolution. Method Enzymol 183: 550–570.

[5]  Rambaut A, Bromham L (1998) Estimating divergence dates from molecular sequences. Mol Biol Evol 15: 442–448.

[6]  Yoder AD, Yang Z (2000) Estimation of primate speciation dates using local molecular clocks. Mol Biol Evol 17: 1081–1090.

[7]  Yang Z, Yoder AD (2003) Comparison of likelihood and Bayesian methods for estimating divergence times using multiple gene loci and calibration points, with application to a radiation of cutelooking mouse lemur species. Syst Biol 52: 705–716.

[8]  Sanderson MJ (1997) A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol 14: 1218–1232.

[9]  Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 19: 101–109.

[10]  Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning. New York: SpringerVerlag.

[11]  Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 15: 1647–1657.

[12]  Ho SY, Phillips MJ, Drummond AJ, Cooper A (2005) Accuracy of rate estimation using relaxedclock models with a critical focus on the early metazoan radiation. Mol Biol Evol 22: 1355–1363.

[13]  Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4: e88.

[14]  Huelsenbeck JP, Larget B, Swofford DL (2000) A compound Poisson process for relaxing the molecular clock. Genetics 154: 1879–1892.

[15]  Rannala B (2002) Identifiability of parameters in MCMC Bayesian inference of phylogeny. Syst Biol 51: 754–760.

[16]  ArisBrosou S, Yang Z (2003) Bayesian models of episodic evolution support a late precambrian explosive diversification of the metazoa. Mol Biol Evol 20: 1947–1954.

[17]  Welch JJ, Fontanillas E, Bromham L (2005) Molecular dates for the “cambrian explosion”: the influence of prior assumptions. Syst Biol 54: 672–678.

[18]  Won H, Renner S (2006) Dating dispersal and radiation in the Gymnosperm Gnetum (Gnetales)？ clock calibration when outgroup relationships are uncertain. Syst Biol 55: 610–622.

[19]  Yang Z (2004) A heuristic rate smoothing procedure for maximum likelihood estimation of species divergence times. Acta Zool Sinica 50: 645–656.

[20]  Yang Z (2006) Computational molecular evolution. Oxford: Oxford University Press.

[21]  Edwards AW (1992) Likelihood. Baltimore and London: John Hopkins University Press.

[22]  Kishino H, Thorne JL, Bruno WJ (2001) Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol Biol Evol 18: 352–361.

[23]  Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13: 555–556.

[24]  Hartigan JA, Wong MA (1979) A Kmeans clustering algorithm. Appl Stat 28: 100–108.

[25]  Kaufman L, Rousseeuw PJ (1990) Finding groups in data : an introduction to cluster analysis. New York: Wiley.

[26]  Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a data set via the gap statistic. J Roy Stat Soc B 63: 411–423.

[27]  Pollard KS, van der Laan MJ (2002) Statistical inference for simultaneous clustering of gene expression data. Math Biosci 176: 99–121.

[28]  van der Laan M, Pollard KS (2003) A new algorithm for hybrid hierarchical clustering with visualization and the bootstrap. J Stat Plan Infer 117: 275–303.

[29]  Pagel M, Meade A, Barker D (2004) Bayesian estimation of ancestral character states on phylogenies. Syst Biol 53: 673–684.

[30]  Prud'homme B, Gompel N, Rokas A, Kassner VA, Williams TM, et al. (2006) Repeated morphological evolution through cisregulatory changes in a pleiotropic gene. Nature 440: 1050–1053.

[31]  Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

[32]  Goldman N, Yang Z (1994) A codonbased model of nucleotide substitution for proteincoding DNA sequences. Mol Biol Evol 11: 725–736.

[33]  Smith AB, Pisani D, MackenzieDodds JA, Stockley B, Webster BL, et al. (2006) Testing the molecular clock: Molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata). Mol Biol Evol 23: 1832–1851.

[34]  Tavare S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17: 57–86.

[35]  Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39: 306–314.

[36]  Hasegawa M, Kishino H, Yano T (1985) Dating of the humanape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22: 160–174.

[37]  AmrineMadsen H, Scally M, Westerman M, Stanhope MJ, Krajewski C, et al. (2003) Nuclear gene sequences provide evidence for the monophyly of australidelphian marsupials. Mol Phylogenet Evol 28: 186–196.

[38]  ArisBrosou S, Bielawski JP (2006) Largescale analyses of synonymous substitution rates can be sensitive to assumptions about the process of mutation. Gene 378: 58–64.

[39]  ArisBrosou S (2006) Identifying sites under positive selection with uncertain parameter estimates. Genome 49: 767–776.

[40]  Sanderson MJ (2003) r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19: 301–302.

[41]  Seiffert ER, Simons EL, Attia Y (2003) Fossil evidence for an ancient divergence of lorises and galagos. Nature 422: 421–424.

[42]  Yang Z, Wong WS, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22: 1107–1118.
