All Title Author
Keywords Abstract

PLOS Medicine  2007 

Making Human Neurons from Stem Cells after Spinal Cord Injury

DOI: 10.1371/journal.pmed.0040048

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  Vogel G (2005) Cell biology. Ready or not? Human ES cells head toward the clinic. Science 308: 1534–1538.
[2]  Hofstetter CP, Holmstrom NA, Lilja JA, Schweinhardt P, Hao J, et al. (2005) Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 8: 346–353.
[3]  Iwanami A, Kaneko S, Nakamura M, Kanemura Y, Mori H, et al. (2005) Transplantation of human neural stem cells for spinal cord injury in primates. J Neuosci Res 80: 182–190.
[4]  Vroemen M, Aigner L, Winkler J, Weidner N (2003) Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways. Eur J Neurosci 18: 743–751.
[5]  Enzmann GU, Benton RL, Talbott JF, Cao Q, Whittemore SR (2006) Functional considerations of stem cell transplantation therapy for spinal cord repair. J Neurotrauma 23: 479–495.
[6]  Han SS, Kang DY, Mujtaba T, Rao MS, Fischer I (2002) Grafted lineage-restricted precursors differentiate exclusively into neurons in the adult spinal cord. Exp Neurol 177: 360–375.
[7]  Mayer-Proschel M, Kalyani AJ, Mujtaba T, Rao MS (1997) Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron 19: 773–785.
[8]  Roy NS, Nakano T, Keyoung HM, Windrem M, Rashbaum WK, et al. (2004) Telomerase immortalization of neuronally restricted progenitor cells derived from the human fetal spinal cord. Nat Biotechnol 22: 297–305.
[9]  Chow SY, Moul J, Tobias CA, Himes BT, Liu Y, et al. (2000) Characterization and intraspinal grafting of EGF/bFGF-dependent neurospheres derived from embryonic rat spinal cord. Brain Res 874: 87–106.
[10]  Ogawa Y, Sawamoto K, Miyata T, Miyao S, Watanabe M, et al. (2002) Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res 69: 925–933.
[11]  Yan J, Xu L, Welsh AM, Hatfield G, Hazel T, et al. (2007) Extensive neuronal differentiation of human neural stem cell grafts in adult spinal cord. PLoS Med 4: e39. doi:10.1371/journal.pmed.0040039.
[12]  Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12: 4565–4574.
[13]  Rietze RL, Reynolds BA (2006) Neural stem cell isolation and characterization. Methods Enzymol 419: 3–23.
[14]  Piao JH, Odeberg J, Samuelsson EB, Kjaeldgaard A, Falci S, et al. (2006) Cellular composition of long-term human spinal cord- and forebrain-derived neurosphere cultures. J Neurosci Res 84: 471–482.
[15]  Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, et al. (2005) Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biology 3: e283. doi:10.1371/journal.pbio.0030283.
[16]  Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, McKay RD (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 10: 3129–3140.
[17]  Young W (2002) Spinal cord contusion models. Prog Brain Res 137: 231–255.
[18]  Hagg T, Oudega M (2006) Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma 23: 264–280.

Full-Text

comments powered by Disqus