All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles

Binding of activated isoniazid with acetyl-CoA carboxylase from Mycobacterium tuberculosis

Hypothalamic Inhibition of Acetyl-CoA Carboxylase Stimulates Hepatic Counter-Regulatory Response Independent of AMPK Activation in Rats

Inhibition of StearoylCoA Desaturase-1 Inactivates Acetyl-CoA Carboxylase and Impairs Proliferation in Cancer Cells: Role of AMPK

Metabolic Regulation of Invadopodia and Invasion by Acetyl-CoA Carboxylase 1 and De novo Lipogenesis

Effect of food deprivation and hormones of glucose homeostasis on the acetyl CoA carboxylase activity in mouse brain: a potential role of acc in the regulation of energy balance

The effects of feeding triacylglcerols on milk fat composition, lipogenesis and polymer-protomer transition of acetyl-coa carboxylase in rat mammary

Association between Phosphorylated AMP-Activated Protein Kinase and Acetyl-CoA Carboxylase Expression and Outcome in Patients with Squamous Cell Carcinoma of the Head and Neck

Simvastatin Induced Neurite Outgrowth Unveils Role of Cell Surface Cholesterol and Acetyl CoA Carboxylase in SH-SY5Y Cells

Maternal Obesity Reduces Milk Lipid Production in Lactating Mice by Inhibiting Acetyl-CoA Carboxylase and Impairing Fatty Acid Synthesis

A Novel W1999S Mutation and Non-Target Site Resistance Impact on Acetyl-CoA Carboxylase Inhibiting Herbicides to Varying Degrees in a UK Lolium multiflorum Population

PLOS Genetics  2012 

Drosophila melanogaster Acetyl-CoA-Carboxylase Sustains a Fatty Acid–Dependent Remote Signal to Waterproof the Respiratory System

DOI: 10.1371/journal.pgen.1002925

Full-Text   Cite this paper   Add to My Lib


Fatty acid (FA) metabolism plays a central role in body homeostasis and related diseases. Thus, FA metabolic enzymes are attractive targets for drug therapy. Mouse studies on Acetyl-coenzymeA-carboxylase (ACC), the rate-limiting enzyme for FA synthesis, have highlighted its homeostatic role in liver and adipose tissue. We took advantage of the powerful genetics of Drosophila melanogaster to investigate the role of the unique Drosophila ACC homologue in the fat body and the oenocytes. The fat body accomplishes hepatic and storage functions, whereas the oenocytes are proposed to produce the cuticular lipids and to contribute to the hepatic function. RNA–interfering disruption of ACC in the fat body does not affect viability but does result in a dramatic reduction in triglyceride storage and a concurrent increase in glycogen accumulation. These metabolic perturbations further highlight the role of triglyceride and glycogen storage in controlling circulatory sugar levels, thereby validating Drosophila as a relevant model to explore the tissue-specific function of FA metabolic enzymes. In contrast, ACC disruption in the oenocytes through RNA–interference or tissue-targeted mutation induces lethality, as does oenocyte ablation. Surprisingly, this lethality is associated with a failure in the watertightness of the spiracles—the organs controlling the entry of air into the trachea. At the cellular level, we have observed that, in defective spiracles, lipids fail to transfer from the spiracular gland to the point of air entry. This phenotype is caused by disrupted synthesis of a putative very-long-chain-FA (VLCFA) within the oenocytes, which ultimately results in a lethal anoxic issue. Preventing liquid entry into respiratory systems is a universal issue for air-breathing animals. Here, we have shown that, in Drosophila, this process is controlled by a putative VLCFA produced within the oenocytes.


[1]  Lehrke M, Pascual G, Glass CK, Lazar MA (2005) Gaining weight: the Keystone Symposium on PPAR and LXR. Genes Dev 19: 1737–1742. doi: 10.1101/gad.1341005
[2]  Iwanaga T, Tsutsumi R, Noritake J, Fukata Y, Fukata M (2009) Dynamic protein palmitoylation in cellular signaling. Prog Lipid Res 48: 117–127. doi: 10.1016/j.plipres.2009.02.001
[3]  Brookheart RT, Michel CI, Schaffer JE (2009) As a matter of fat. Cell Metab 10: 9–12. doi: 10.1016/j.cmet.2009.03.011
[4]  Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7: 763–777. doi: 10.1038/nrc2222
[5]  Menendez JA, Vazquez-Martin A, Ortega FJ, Fernandez-Real JM (2009) Fatty acid synthase: association with insulin resistance, type 2 diabetes, and cancer. Clin Chem 55: 425–438. doi: 10.1373/clinchem.2008.115352
[6]  Denechaud PD, Girard J, Postic C (2008) Carbohydrate responsive element binding protein and lipid homeostasis. Curr Opin Lipidol 19: 301–306. doi: 10.1097/mol.0b013e3282ffafaa
[7]  Lafontan M, Langin D (2009) Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 48: 275–297. doi: 10.1016/j.plipres.2009.05.001
[8]  Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A (2009) Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res 50: 3–21. doi: 10.1194/jlr.r800031-jlr200
[9]  Nagle CA, Klett EL, Coleman RA (2009) Hepatic triacylglycerol accumulation and insulin resistance. J Lipid Res 50 Suppl: S74–79. doi: 10.1194/jlr.r800053-jlr200
[10]  Baker KD, Thummel CS (2007) Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metab 6: 257–266. doi: 10.1016/j.cmet.2007.09.002
[11]  Sieber MH, Thummel CS (2009) The DHR96 nuclear receptor controls triacylglycerol homeostasis in Drosophila. Cell Metab 10: 481–490. doi: 10.1016/j.cmet.2009.10.010
[12]  Wigglesworth VB (1949) The utilization of reserve substances in Drosophila during flight. J Exp Biol 26: 150–163 illust.
[13]  Ruaud AF, Lam G, Thummel CS (2011) The Drosophila NR4A nuclear receptor DHR38 regulates carbohydrate metabolism and glycogen storage. Mol Endocrinol 25: 83–91. doi: 10.1210/me.2010-0337
[14]  Gutierrez E, Wiggins D, Fielding B, Gould AP (2007) Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature 445: 275–280. doi: 10.1038/nature05382
[15]  Wheeler WM (1892) Concerning the “blood-tissue” of the insecta. PSYCHE A Journal of Entomology 6: 216–220, 233–236, 254–258. doi: 10.1155/1892/54147
[16]  Manning G, Krasnow MA (1993) Development of the Drosophila tracheal system.; In Bate MaM-A, A (eds), editor. Cold Spring Harbor, NY.: Cold Spring Harbor Laboratory Press.
[17]  Barber MC, Price NT, Travers MT (2005) Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochim Biophys Acta 1733: 1–28. doi: 10.1016/j.bbalip.2004.12.001
[18]  Smith S, Tsai SC (2007) The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat Prod Rep 24: 1041–1072. doi: 10.1039/b603600g
[19]  Jakobsson A, Westerberg R, Jacobsson A (2006) Fatty acid elongases in mammals: their regulation and roles in metabolism. Prog Lipid Res 45: 237–249. doi: 10.1016/j.plipres.2006.01.004
[20]  Guillou H, Zadravec D, Martin PG, Jacobsson A (2010) The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog Lipid Res 49: 186–199. doi: 10.1016/j.plipres.2009.12.002
[21]  Abu-Elheiga L, Matzuk MM, Kordari P, Oh W, Shaikenov T, et al. (2005) Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proc Natl Acad Sci U S A 102: 12011–12016. doi: 10.1073/pnas.0505714102
[22]  Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ (2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291: 2613–2616. doi: 10.1126/science.1056843
[23]  Morillas M, Gomez-Puertas P, Roca R, Serra D, Asins G, et al. (2001) Structural model of the catalytic core of carnitine palmitoyltransferase I and carnitine octanoyltransferase (COT): mutation of CPT I histidine 473 and alanine 381 and COT alanine 238 impairs the catalytic activity. J Biol Chem 276: 45001–45008. doi: 10.1074/jbc.m106920200
[24]  Mao J, DeMayo FJ, Li H, Abu-Elheiga L, Gu Z, et al. (2006) Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc Natl Acad Sci U S A 103: 8552–8557. doi: 10.1073/pnas.0603115103
[25]  Mao J, Yang T, Gu Z, Heird WC, Finegold MJ, et al. (2009) aP2-Cre-mediated inactivation of acetyl-CoA carboxylase 1 causes growth retardation and reduced lipid accumulation in adipose tissues. Proc Natl Acad Sci U S A 106: 17576–17581. doi: 10.1073/pnas.0909055106
[26]  Chirala SS, Chang H, Matzuk M, Abu-Elheiga L, Mao J, et al. (2003) Fatty acid synthesis is essential in embryonic development: fatty acid synthase null mutants and most of the heterozygotes die in utero. Proc Natl Acad Sci U S A 100: 6358–6363. doi: 10.1073/pnas.0931394100
[27]  Chakravarthy MV, Pan Z, Zhu Y, Tordjman K, Schneider JG, et al. (2005) “New” hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 1: 309–322. doi: 10.1016/j.cmet.2005.04.002
[28]  Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, et al. (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448: 151–156. doi: 10.1038/nature05954
[29]  Flybase (2003) The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Res 31: 172–175. doi: 10.1093/nar/gkg094
[30]  Chintapalli VR, Wang J, Dow JA (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39: 715–720. doi: 10.1038/ng2049
[31]  Parra-Peralbo E, Culi J (2011) Drosophila lipophorin receptors mediate the uptake of neutral lipids in oocytes and imaginal disc cells by an endocytosis-independent mechanism. PLoS Genet 7: e1001297 doi:10.1371/journal.pgen.1001297.. doi: 10.1371/journal.pgen.1001297
[32]  Wingrove JA, O'Farrell PH (1999) Nitric oxide contributes to behavioral, cellular, and developmental responses to low oxygen in Drosophila. Cell 98: 105–114. doi: 10.1016/s0092-8674(00)80610-8
[33]  Billeter JC, Atallah J, Krupp JJ, Millar JG, Levine JD (2009) Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 461: 987–991. doi: 10.1038/nature08495
[34]  Reiling JH, Hafen E (2004) The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev 18: 2879–2892. doi: 10.1101/gad.322704
[35]  Rizki MTM (1956) The cytophysiology of the spiracular glands of Drosophila melanogaster. J Morphol 98: 497–511. doi: 10.1002/jmor.1050980307
[36]  Jarial MS, Engstrom E (1995) Fine structure of the spiracular glands in larval Drosophila melanogaster (MEIG.) (Diptera: Drosophilidae). Int J Insect Morphol & Embryol 24: 1–12. doi: 10.1016/0020-7322(94)00010-n
[37]  Dantuma NP, Potters M, De Winther MP, Tensen CP, Kooiman FP, et al. (1999) An insect homolog of the vertebrate very low density lipoprotein receptor mediates endocytosis of lipophorins. J Lipid Res 40: 973–978.
[38]  Qatanani M, Lazar MA (2007) Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev 21: 1443–1455. doi: 10.1101/gad.1550907
[39]  Agius L (2008) Glucokinase and molecular aspects of liver glycogen metabolism. Biochem J 414: 1–18. doi: 10.1042/bj20080595
[40]  Krssak M, Brehm A, Bernroider E, Anderwald C, Nowotny P, et al. (2004) Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes 53: 3048–3056. doi: 10.2337/diabetes.53.12.3048
[41]  Kir S, Beddow SA, Samuel VT, Miller P, Previs SF, et al. (2011) FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331: 1621–1624. doi: 10.1126/science.1198363
[42]  Docsa T, Czifrak K, Huse C, Somsak L, Gergely P (2011) Effect of glucopyranosylidene-spiro-thiohydantoin on glycogen metabolism in liver tissues of streptozotocin-induced and obese diabetic rats. Mol Med Report 4: 477–481. doi: 10.3892/mmr.2011.464
[43]  Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785–789. doi: 10.1038/378785a0
[44]  Sutherland D, Samakovlis C, Krasnow MA (1996) branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87: 1091–1101. doi: 10.1016/s0092-8674(00)81803-6
[45]  Gryzik T, Muller HA (2004) FGF8-like1 and FGF8-like2 encode putative ligands of the FGF receptor Htl and are required for mesoderm migration in the Drosophila gastrula. Curr Biol 14: 659–667. doi: 10.1016/j.cub.2004.03.058
[46]  Albro HT (1930) A cytological study of the changes occurring in the oenocytes of Galerucella nymphaeae Linn. during the larval and pupal periods of development. Journal of Morphology 50: 527–567. doi: 10.1002/jmor.1050500211
[47]  Pospisilik JA, Schramek D, Schnidar H, Cronin SJ, Nehme NT, et al. (2010) Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140: 148–160. doi: 10.1016/j.cell.2009.12.027
[48]  Kraegen EW, Cooney GJ, Turner N (2008) Muscle insulin resistance: a case of fat overconsumption, not mitochondrial dysfunction. Proc Natl Acad Sci U S A 105: 7627–7628. doi: 10.1073/pnas.0803901105
[49]  Browning JD, Baxter J, Satapati S, Burgess SC (2012) The effect of short-term fasting on liver and skeletal muscle lipid, glucose, and energy metabolism in healthy women and men. J Lipid Res 53: 577–586. doi: 10.1194/jlr.p020867
[50]  Martins GF, Ramalho-Ortigao JM, Lobo NF, Severson DW, McDowell MA, et al. (2011) Insights into the transcriptome of oenocytes from Aedes aegypti pupae. Mem Inst Oswaldo Cruz 106: 308–315.
[51]  Krupp JJ, Kent C, Billeter JC, Azanchi R, So AK, et al. (2008) Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster. Curr Biol 18: 1373–1383. doi: 10.1016/j.cub.2008.07.089
[52]  Kohler K, Brunner E, Guan XL, Boucke K, Greber UF, et al. (2009) A combined proteomic and genetic analysis identifies a role for the lipid desaturase Desat1 in starvation-induced autophagy in Drosophila. Autophagy 5: 980–990. doi: 10.4161/auto.5.7.9325
[53]  Wigglesworth VB (1988) The source of lipids and polyphenols for the insect cuticle: The role of fat body, oenocytes and oenocytoids. Tissue Cell 20: 919–932. doi: 10.1016/0040-8166(88)90033-x
[54]  Li Y, Paik YK (2011) A potential role for fatty acid biosynthesis genes during molting and cuticle formation in Caenorhabditis elegans. BMB Rep 44: 285–290. doi: 10.5483/bmbrep.2011.44.4.285
[55]  Hoffmann AA, Harshman LG (1999) Desiccation and starvation resistance in Drosophila: patterns of variation at the species, population and intrapopulation levels. Heredity (Edinb) 83(Pt 6):637–643. doi: 10.1046/j.1365-2540.1999.00649.x
[56]  Neven L, Mitcham E (2008) Controlled atmosphere technologies for insect control. In: Capinera JL, editor. Encyclopedia of entomology. New York: Springer. pp. 1046–1051.
[57]  Liu L, Johnson WA, Welsh MJ (2003) Drosophila DEG/ENaC pickpocket genes are expressed in the tracheal system, where they may be involved in liquid clearance. Proc Natl Acad Sci U S A 100: 2128–2133. doi: 10.1073/pnas.252785099
[58]  Behr M, Wingen C, Wolf C, Schuh R, Hoch M (2007) Wurst is essential for airway clearance and respiratory-tube size control. Nat Cell Biol 9: 847–853. doi: 10.1038/ncb1611
[59]  Zhang L, Ward REt (2009) uninflatable encodes a novel ectodermal apical surface protein required for tracheal inflation in Drosophila. Dev Biol 336: 201–212. doi: 10.1016/j.ydbio.2009.09.040
[60]  Alvarez de la Rosa D, Canessa CM, Fyfe GK, Zhang P (2000) Structure and regulation of amiloride-sensitive sodium channels. Annu Rev Physiol 62: 573–594. doi: 10.1146/annurev.physiol.62.1.573
[61]  Hummler E, Barker P, Gatzy J, Beermann F, Verdumo C, et al. (1996) Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet 12: 325–328. doi: 10.1038/ng0396-325
[62]  Whitten J (1980) The tracheal system.: ed. M. Ashburner and T.R.F Wright. 499–540 p.
[63]  Asha H, Nagy I, Kovacs G, Stetson D, Ando I, et al. (2003) Analysis of Ras-induced overproliferation in Drosophila hemocytes. Genetics 163: 203–215.
[64]  Chen P, Nordstrom W, Gish B, Abrams JM (1996) grim, a novel cell death gene in Drosophila. Genes Dev 10: 1773–1782. doi: 10.1101/gad.10.14.1773
[65]  Parks AL, Cook KR, Belvin M, Dompe NA, Fawcett R, et al. (2004) Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat Genet 36: 288–292. doi: 10.1038/ng1312
[66]  Ye X, Liu Q (2008) Expression, purification, and analysis of recombinant Drosophila Dicer-1 and Dicer-2 enzymes. Methods Mol Biol 442: 11–27. doi: 10.1007/978-1-59745-191-8_2
[67]  Lee YS, Carthew RW (2003) Making a better RNAi vector for Drosophila: use of intron spacers. Methods 30: 322–329. doi: 10.1016/s1046-2023(03)00051-3
[68]  Romeo Y, Lemaitre B (2008) Drosophila immunity: methods for monitoring the activity of Toll and Imd signaling pathways. Methods Mol Biol 415: 379–394.
[69]  Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ, et al. (2002) Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 277: 32253–32257. doi: 10.1074/jbc.m204410200
[70]  Meunier N, Belgacem YH, Martin JR (2007) Regulation of feeding behaviour and locomotor activity by takeout in Drosophila. J Exp Biol 210: 1424–1434. doi: 10.1242/jeb.02755
[71]  Dionne MS, Pham LN, Shirasu-Hiza M, Schneider DS (2006) Akt and FOXO dysregulation contribute to infection-induced wasting in Drosophila. Curr Biol 16: 1977–1985. doi: 10.1016/j.cub.2006.08.052
[72]  Bathellier C, Tcherkez G, Mauve C, Bligny R, Gout E, et al. (2009) On the resilience of nitrogen assimilation by intact roots under starvation, as revealed by isotopic and metabolomic techniques. Rapid Commun Mass Spectrom 23: 2847–2856. doi: 10.1002/rcm.4198


comments powered by Disqus