All Title Author
Keywords Abstract

Stage Progression and Neurological Symptoms in Trypanosoma brucei rhodesiense Sleeping Sickness: Role of the CNS Inflammatory Response

DOI: 10.1371/journal.pntd.0001857

Full-Text   Cite this paper   Add to My Lib


Background Human African trypanosomiasis progresses from an early (hemolymphatic) stage, through CNS invasion to the late (meningoencephalitic) stage. In experimental infections disease progression is associated with neuroinflammatory responses and neurological symptoms, but this concept requires evaluation in African trypanosomiasis patients, where correct diagnosis of the disease stage is of critical therapeutic importance. Methodology/Principal Findings This was a retrospective study on a cohort of 115 T.b.rhodesiense HAT patients recruited in Eastern Uganda. Paired plasma and CSF samples allowed the measurement of peripheral and CNS immunoglobulin and of CSF cytokine synthesis. Cytokine and immunoglobulin expression were evaluated in relation to disease duration, stage progression and neurological symptoms. Neurological symptoms were not related to stage progression (with the exception of moderate coma). Increases in CNS immunoglobulin, IL-10 and TNF-α synthesis were associated with stage progression and were mirrored by a reduction in TGF-β levels in the CSF. There were no significant associations between CNS immunoglobulin and cytokine production and neurological signs of disease with the exception of moderate coma cases. Within the study group we identified diagnostically early stage cases with no CSF pleocytosis but intrathecal immunoglobulin synthesis and diagnostically late stage cases with marginal CSF pleocytosis and no detectable trypanosomes in the CSF. Conclusions Our results demonstrate that there is not a direct linkage between stage progression, neurological signs of infection and neuroinflammatory responses in rhodesiense HAT. Neurological signs are observed in both early and late stages, and while intrathecal immunoglobulin synthesis is associated with neurological signs, these are also observed in cases lacking a CNS inflammatory response. While there is an increase in inflammatory cytokine production with stage progression, this is paralleled by increases in CSF IL-10. As stage diagnostics, the CSF immunoglobulins and cytokines studied do not have sufficient sensitivity to be of clinical value.


[1]  Kennedy PG (2004) Human African trypanosomiasis of the CNS: current issues and challenges. The Journal of clinical investigation 113: 496–504. doi: 10.1172/JCI21052
[2]  Checchi F, Filipe JA, Barrett MP, Chandramohan D (2008) The natural progression of Gambiense sleeping sickness: what is the evidence? PLoS Negl Trop Dis 2: e303. doi: 10.1371/journal.pntd.0000303
[3]  Kabore J, Koffi M, Bucheton B, MacLeod A, Duffy C, et al. (2011) First evidence that parasite infecting apparent aparasitemic serological suspects in human African trypanosomiasis are Trypanosoma brucei gambiense and are similar to those found in patients. Infection Genetics and Evolution 11: 1250–1255. doi: 10.1016/j.meegid.2011.04.014
[4]  Jamonneau V, Ilboudo H, Kabore J, Kaba D, Koffi M, et al. (2012) Untreated Human Infections by Trypanosoma brucei gambiense Are Not 100% Fatal. PLoS Negl Trop Dis 6: e1691. doi: 10.1371/journal.pntd.0001691
[5]  Sternberg JM, Maclean L (2010) A spectrum of disease in human African trypanosomiasis: the host and parasite genetics of virulence. Parasitology 137: 2007–2015. doi: 10.1017/S0031182010000946
[6]  Namangala B, Noel W, De Baetselier P, Brys L, Beschin A (2001) Relative contribution of interferon-gamma and interleukin-10 to resistance to murine African trypanosomosis. J Infect Dis 183: 1794–1800. doi: 10.1086/320731
[7]  Hunter CA, Gow JW, Kennedy PG, Jennings FW, Murray M (1991) Immunopathology of experimental African sleeping sickness: detection of cytokine mRNA in the brains of Trypanosoma brucei brucei-infected mice. Infect Immun 59: 4636–4640. doi: 10.1016/j.meegid.2011.04.014
[8]  Sternberg JM, Rodgers J, Bradley B, Maclean L, Murray M, et al. (2005) Meningoencephalitic African trypanosomiasis: Brain IL-10 and IL-6 are associated with protection from neuro-inflammatory pathology. J Neuroimmunol 167: 81–89. doi: 10.1016/j.jneuroim.2005.06.017
[9]  Sternberg JM (2004) Human African trypanosomiasis: clinical presentation and immune response. Parasite Immunol 26: 469–476. doi: 10.1111/j.0141-9838.2004.00731.x
[10]  Rodgers J (2010) Trypanosomiasis and the brain. Parasitology 137: 1995–2006. doi: 10.1017/S0031182009991806
[11]  Lejon V, Buscher P (2005) Review article: Cerebrospinal fluid in human African trypanosomiasis: a key to diagnosis, therapeutic decision and post-treatment follow-up. Tropical Medicine & International Health 10: 395–403. doi: 10.1111/j.1365-3156.2005.01403.x
[12]  Kennedy PGE (2006) Diagnostic and neuropathogenesis issues in human African trypanosomiasis. International Journal for Parasitology 36: 505–512. doi: 10.1016/j.ijpara.2006.01.012
[13]  Kennedy PGE (2008) Diagnosing central nervous system trypanosomiasis: two stage or not to stage? Transactions of the Royal Society of Tropical Medicine and Hygiene 102: 306–307. doi: 10.1016/j.trstmh.2007.11.011
[14]  WHO (1998) Control and Surveillance of African Trypanosomiasis. WHO Tech Rep Ser 881: 1–113.
[15]  Lejon V, Reiber H, Legros D, Dje N, Magnus E, et al. (2003) Intrathecal immune response pattern for improved diagnosis of central nervous system involvement in trypanosomiasis. J Infect Dis 187: 1475–1483. doi: 10.1086/374645
[16]  Lejon V, Lardon J, Kenis G, Pinoges L, Legros D, et al. (2002) Interleukin (IL)-6, IL-8 and IL-10 in serum and CSF of Trypanosoma brucei gambiense sleeping sickness patients before and after treatment. Trans R Soc Trop Med Hyg 96: 329–333. doi: 10.1016/S0035-9203(02)90115-X
[17]  Courtioux B, Boda C, Vatunga G, Pervieux L, Josenando T, et al. (2006) A link between chemokine levels and disease severity in human African trypanosomiasis. International Journal for Parasitology 36: 1057–1065. doi: 10.1016/j.ijpara.2006.04.011
[18]  Hainard A, Tiberti N, Robin X, Lejon V, Ngoyi DM, et al. (2009) A Combined CXCL10, CXCL8 and H-FABP Panel for the Staging of Human African Trypanosomiasis Patients. Plos Neglected Tropical Diseases 3. doi: 10.1371/journal.pntd.0000459
[19]  Maclean L, Odiit M, Sternberg JM (2006) Intrathecal cytokine responses in Trypanosoma brucei rhodesiense sleeping sickness patients. Trans R Soc Trop Med Hyg 100: 270–275. doi: 10.1016/j.trstmh.2005.03.013
[20]  MacLean LM, Odiit M, Chisi JE, Kennedy PGE, Sternberg JM (2010) Focus-Specific Clinical Profiles in Human African Trypanosomiasis Caused by Trypanosoma brucei rhodesiense. Plos Neglected Tropical Diseases 4: e906. doi: 10.1371/journal.pntd.0000906
[21]  MacLean L, Odiit M, MacLeod A, Morrison L, Sweeney L, et al. (2007) Spatially and genetically distinct African trypanosome virulence variants defined by host interferon-gamma response. Journal of Infectious Diseases 196: 1620–1628. doi: 10.1086/522011
[22]  Cattand P, Miezan BT, de Raadt P (1988) Human African trypanosomiasis: use of double centrifugation of cerebrospinal fluid to detect trypanosomes. Bull World Health Organ 66: 83–86. doi: 10.1371/journal.pntd.0000459
[23]  MacLean L, Chisi JE, Odiit M, Gibson WC, Ferris V, et al. (2004) Severity of Human African Trypanosomiasis in East Africa is associated with geographic location, parasite genotype and host-inflammatory cytokine response profile. Infect Immun 72: 7040–7044. doi: 10.1128/IAI.72.12.7040-7044.2004
[24]  MacLean L, Odiit M, Sternberg JM (2001) Nitric oxide and cytokine synthesis in human African trypanosomiasis. J Infect Dis 184: 1086–1090. doi: 10.1086/323479
[25]  Reiber H (2003) Proteins in cerebrospinal fluid and blood: barriers, CSF flow rate and source-related dynamics. Restor Neurol Neurosci 21: 79–96.
[26]  Reiber H, Peter JB (2001) Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurol Sci 184: 101–122. doi: 10.1016/S0022-510X(00)00501-3
[27]  Morrison LJ, McLellan S, Sweeney L, Chan CN, MacLeod A, et al. (2010) Role for parasite genetic diversity in differential host responses to Trypanosoma brucei infection. Infect Immun 78: 1096–1108. doi: 10.1128/IAI.00943-09
[28]  Hassan HY, Underhill PA, Cavalli-Sforza LL, Ibrahim ME (2008) Y-Chromosome Variation Among Sudanese: Restricted Gene Flow, Concordance With Language, Geography, and History. American Journal of Physical Anthropology 137: 316–323. doi: 10.1002/ajpa.20876
[29]  Baral TN (2010) Immunobiology of African Trypanosomes: Need of Alternative Interventions. Journal of Biomedicine and Biotechnology doi: 10.1155/2010/389153
[30]  Binz G, Watson HJC (1972) Observations on Patterns of Blood IgM Levels in Populations of Endemic and Nonendemic Sleeping Sickness Areas in Kenya. Bulletin of the World Health Organization 47: 757–767. doi: 10.1155/2010/389153
[31]  Eckersall PD, Gow JW, McComb C, Bradley B, Rodgers J, et al. (2001) Cytokines and the acute phase response in post-treatment reactive encephalopathy of Trypanosoma brucei brucei infected mice. Parasitol Int 50: 15–26. doi: 10.1016/S1383-5769(00)00065-9
[32]  Beutler B, Cerami A (1986) Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature 320: 584–588. doi: 10.1038/320584a0
[33]  Reiber H (1994) Flow rate of cerebrospinal fluid (CSF)–a concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases. J Neurol Sci 122: 189–203. doi: 10.1016/0022-510X(94)90298-4
[34]  Masocha W, Robertson B, Rottenberg ME, Mhlanga J, Sorokin L, et al. (2004) Cerebral vessel laminins and IFN-gamma define Trypanosoma brucei brucei penetration of the blood-brain barrier. J Clin Invest 114: 689–694. doi: 10.1172/JCI22104
[35]  Sjogren M, Folkesson S, Blennow K, Tarkowski E (2004) Increased intrathecal inflammatory activity in frontotemporal dementia: pathophysiological implications. Journal of Neurology Neurosurgery and Psychiatry 75: 1107–1111. doi: 10.1136/jnnp.2003.019422
[36]  Hunter CA, Kennedy PGE (1992) Immunopathology in Central-Nervous-System Human African Trypanosomiasis. Journal of Neuroimmunology 36: 91–95. doi: 10.1016/0165-5728(92)90040-R
[37]  Okomo-Assoumou MC, Daulouede S, Lemesre JL, N'Zila-Mouanda A, Vincendeau P (1995) Correlation of high serum levels of tumor necrosis factor-alpha with disease severity in human African trypanosomiasis. Am J Trop Med Hyg 53: 539–543. doi: 10.1136/jnnp.2003.019422
[38]  Esamai F, Ernerudh J, Janols H, Welin S, Ekerfelt C, et al. (2003) Cerebral malaria in children: Serum and cerebrospinal fluid TNF-alpha and TGF-beta levels and their relationship to clinical outcome. Journal of Tropical Pediatrics 49: 216–223. doi: 10.1093/tropej/49.4.216
[39]  Benveniste EN (1998) Cytokine actions in the central nervous system. Cytokine Growth Factor Rev 9: 259–275. doi: 10.1016/S1359-6101(98)00015-X
[40]  Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19: 683–765. doi: 10.1146/annurev.immunol.19.1.683
[41]  Calvo CF, Amigou E, Desaymard C, Glowinski J (2005) A pro- and an anti-inflammatory cytokine are synthetised in distinct brain macrophage cells during innate activation. Journal of Neuroimmunology 170: 21–30. doi: 10.1016/j.jneuroim.2005.08.005


comments powered by Disqus