[1] | Tinoco I Jr, Uhlenbeck OC, Levine MD (1971) Estimation of secondary structure in ribonucleic acids. Nature 230: 362–367.
|
[2] | Tinoco I Jr, Borer PN, Dengler B, Levine MD, Uhlenbeck OC, et al. (1973) Improved estimation of secondary structure in ribonucleic acids. Nature New Biol 246: 40–41.
|
[3] | Nussinov R, Jacobson A (1980) Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc Natl Acad Sci U S A 77: 6309–6313.
|
[4] | Zuker M, Sankoff D (1984) RNA secondary structures and their prediction. Bull Math Biol 46: 591–621.
|
[5] | Mathews D, Sabina J, Zuker M, Turner D (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288: 911–940.
|
[6] | Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 3406–3415.
|
[7] | Hofacker IL, Fontana W, Stadler PF, Bonhoeffer S, Tacker M, et al. (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125: 167–188.
|
[8] | Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamic and auxiliary information. Nucleic Acids Res 9: 133–148.
|
[9] | Wuchty S, Fontana W, Hofacker I, Schuster P (1999) Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49: 145–165.
|
[10] | Hofacker I, Fekete M, Stadler P (2002) Secondary structure prediction for aligned RNA sequences. J Mol Biol 319: 1059–1066.
|
[11] | Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31: 3429–3431.
|
[12] | Morgan SR, Higgs PG (1996) Evidence for kinetic effects in the folding of large RNA molecules. J Chem Phys 105: 7152–7157.
|
[13] | Boyle J, Robillard G, Kim S (1980) Sequential folding of transfer RNA. A nuclear magnetic resonance study of successively longer tRNA fragments with a common 5′ end. J Mol Biol 139: 601–625.
|
[14] | Kramer F, Mills D (1981) Secondary structure formation during RNA-synthesis. Nucleic Acids Res 9: 5109–5124.
|
[15] | Meyer IM, Miklós I (2004) Co-transcriptional folding is encoded within RNA genes. BMC Mol Biol 5: 10.
|
[16] | Gultyaev A (1991) The computer-simulation of RNA folding involving pseudoknot formation. Nucleic Acids Res 19: 2489–2493.
|
[17] | Gultyaev A, von Batenburg F, Pleij C (1995) The computer-simulation of RNA folding pathways using a genetic algorithm. J Mol Biol 250: 37–51.
|
[18] | Isambert H, Siggia E (2000) Modeling RNA folding paths with pseudoknots: Application to hepatitis delta virus ribozyme. Proc Natl Acad Sci U S A 97: 6515–6520.
|
[19] | Xayaphoummine A, Bucher T, Thalmann F, Isambert H (2003) Prediction and statistics of pseudoknots in RNA structures using exactly clustered stochastic simulations. Proc Natl Acad Sci U S A 100: 15310–15315.
|
[20] | Staple DW, Butcher SE (2005) Pseudoknots: RNA structures with diverse functions. PLoS Biology 3: e213.. doi:10.1371/journal.pbio.0030213.
|
[21] | Lyngs? R, Pedersen C (2000) RNA pseudoknot prediction in energy based models. J Comp Biol 7: 409–428.
|
[22] | Lyngs? R (2004) Complexity of pseudoknot prediction in simple models. In: Diaz J, Karhum?ki J, Lepist? A, Sannella D, editors. Proceedings of the 31st International Colloquium on Automata, Languages, and Programming (ICALP). pp. 919–931.
|
[23] | Rivas E, Eddy SR (1999) A dynamic programming algorithm for RNA structure prediction including pseudoknots. J Mol Biol 285: 2053–2068.
|
[24] | Rivas E, Eddy SR (2000) The language of RNA: A formal grammar that includes pseudoknots. Bioinformatics 16: 334–340.
|
[25] | Lyngso R, Pedersen C (2000) Pseudoknots in RNA secondary structures. In: Shamir R, Miyano S, Istrail S, Pevzner P, Waterman M, editors. Proceedings of the Fourth Annual International Conference on Computational Molecular Viology. New York: ACM Press. pp. 201–209.
|
[26] | Akutsu T (2000) Dynamic programming algorithms for RNA secondary prediction with pseudoknots. Discrete Appl Math 104: 45–62.
|
[27] | Dirks RM, Pierce NA (2003) A partition function algorithm for nucleic acid secondary structure including pseudoknots. J Comput Chem 24: 1664–1677.
|
[28] | Cai L, Malmberg R, Wu Y (2003) Stochastic modeling of RNA pseudoknotted structures: A grammatical approach. Bioinformatics 19: 66–73.
|
[29] | Deogun J, Donis E, Komina O, Ma F (2004) RNA secondary structure prediction with simple pseudoknots. In: Chen YP, editor. Proceedings of the Second Asia Pacific Bioinformatics Conference. pp. 239–246.
|
[30] | Reeder J, Giegerich R (2004) Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5: 104.
|
[31] | Knudsen B, Hein J (1999) RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics 15: 446–454.
|
[32] | Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res 31: 3423–3428.
|
[33] | Pedersen JS, Forsberg R, Meyer IM, Hein J (2004) An evolutionary model for protein-coding regions with conserved RNA structure. Mol Biol Evol 21: 1913–1922.
|
[34] | Pedersen JS, Meyer IM, Forsberg R, Simmonds P, Hein J (2004) A comparative method for finding and folding RNA secondary structures within protein-coding regions. Nucleic Acids Res 32: 4925–4936.
|
[35] | Gabow HN (1973) Implementation of algorithms for maximum matching on nonbipartite graphs. Stanford (California): Stanford University. 248 p. [dissertation].
|
[36] | Gabow HN (1976) An efficient implementation of Edmonds' algorithm for maximum matching on graphs. J ACM 23: 221–234.
|
[37] | Tabaska J, Cary R, Gabow H, Stormo G (1998) An RNA folding method capable of identifying pseudoknots and base triples. Bioinformatics 14: 691–699.
|
[38] | Witwer C (2003) Prediction of conserved and consensus RNA structures. Vienna: Universit?t Wien. 187 p. [dissertation].
|
[39] | Haslinger C, Stadler PF (1999) RNA structures with pseudo-knots: Graph-theoretical, combinatorical, and statistical properties. Bull Math Biol 61: 437–467.
|
[40] | Ruan J, Stormo G, Zhang W (2004) An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots. Bioinformatics 20: 58–66.
|
[41] | Mathews DH, Turner DH (2002) Dynalign: An algorithm for finding the secondary structure common to two RNA sequences. J Mol Biol 317: 191–203.
|
[42] | Mathews DH (2005) Predicting a set of minimal free energy RNA secondary structures common to two sequences. Bioinformatics 21: 2246–2253.
|
[43] | Havgaard JH, Lyngs? RB, Stormo GD, Gorodkin J (2005) Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics 21: 1815–1824.
|
[44] | Havgaard JH, Lyngs? RB, Gorodkin J (2005) The FOLDALIGN web server for pairwise structural RNA alignment and mutual motif search. Nucleic Acids Res 33: W650–W653.
|
[45] | Perriquet O, Touzet H, Dauchet M (2003) Finding the common structure shared by two homologous RNAs. Bioinformatics 19: 108–116.
|
[46] | Touzet H, Perriquet O (2004) CARNAC: Folding families of related RNAs. Nucleic Acids Res 32: W142–W145.
|
[47] | Ji Y, Xu X, Stormo G (2004) A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences. Bioinformatics 20: 1591–1602.
|
[48] | Holmes I (2005) Accelerated probabilistic inference of RNA structure evolution. BMC Bioinformatics 6: 73.
|
[49] | Dowell RD, Eddy SR (2006) Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints. BMC Bioinformatics 7: 400.
|
[50] | Sankoff D (1985) Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J Appl Math 45: 810–825.
|
[51] | Eddy SR, Durbin R (1994) RNA sequence analysis using covariance models. Nucleic Acids Res 22: 2079–2088.
|
[52] | Sakakibara Y, Brown M, Underwood R, Mian IS, Haussler D (1994) Stochastic context-free grammars for modeling RNA. Proceedings of the 27th Hawaii International Conference on System Sciences. Honolulu: IEEE Computer Society Press. pp. 284–283.
|
[53] | Holmes I, Rubin G (2002) Pairwise RNA structure comparison with stochastic context-free grammars. Pac Symp Biocomput 2002: 163–174.
|
[54] | Holmes I (2004) A probabilistic model for the evolution of RNA structure. BMC Bioinformatics 5: 166.
|
[55] | Corpet F, Michot B (1994) RNAlign program: Alignment of RNA sequences using both primary and secondary structures. Comput Appl Biosci 10: 389–399.
|
[56] | Lanhof H, Reinert K, Vingron M (1998) A polyhedral approach to RNA sequence structural alignment. J Comp Biol 5: 517–530.
|
[57] | Felsenstein J (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 17: 368–376.
|
[58] | L?ytynoja A, Goldman N (2005) An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci U S A 102: 10557–10562.
|
[59] | Kingman JFC (1982) The coalescent. Stoch Process Appl 13: 235–248.
|
[60] | Zuker M, Mathews DH, Turner DH (1999) Algorithms and thermodynamics for RNA secondary structure prediction: A practical guide. In: Barciszewski J, Clark BFC, editors. RNA biochemistry and biotechnology. Dordrecht (The Netherlands): Kluwer. pp. 11–43.
|
[61] | Chenna R, Sugawara H, Koike T, Lopez R, Gibson T, et al. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31: 3497–3500.
|
[62] | Metropolis N, Rosenbluth AN, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculation by fast computing machines. J Chem Phys 21: 1087–1092.
|
[63] | Liu JS (2001) Monte Carlo strategies in scientific computing. New York: Springer. 343 p.
|
[64] | Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57: 97–109.
|
[65] | MacKay D (2003) Information theory, inference, and learning algorithms. Cambridge: Cambridge University Press. 628 p.
|
[66] | Miklos I, Ittzes P, Hein J (2005) ParIS Genome Rearrangement server. Bioinformatics 21: 817–820.
|
[67] | Lunter G, Miklós I, Drummond A, Jensen J, Hein J (2005) Bayesian coestimation of phylogeny and sequence alignment. BMC Bioinformatics 6: 83.
|
[68] | Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W (2002) Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161: 1307–1320.
|
[69] | Day W (1983) Properties of the nearest neighbor interchange metric for trees of small size. J Theor Biol 101: 275–288.
|
[70] | Vinh L, von Haeseler A (2004) Shortest triplet clustering: Reconstructing large phylogenies using representative sets. Mol Biol Evol 21: 1565–1571.
|
[71] | Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.
|
[72] | Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge: Cambridge University Press. 356 p.
|
[73] | Fontana W, Konings DAM, Stadler PF, Schuster P (1993) Statistics of RNA secondary structures. Biopolymers 33: 1389–1404.
|
[74] | H?chsmann M, T?ller T, Giegerich R, Kurtz S (2003) Local similarity in RNA secondary structures. Proc IEEE Comput Soc Bioinform Conf 2003: 159–168.
|
[75] | H?chsmann M, Voss B, Giegerich R (2004) Pure multiple RNA secondary structure alignments: A progressive profile approach. IEEE/ACM Trans Comput Biol Bioinform 1: 53–62.
|
[76] | Rothberg E (1985) Solver-1 [computer program]. Available: ftp://dimacs.rutgers.edu/pub/netflow/mat?ching/weighted/. Accessed 9 July 2007.
|
[77] | Condon A, Davy B, Rastegari B, Tarrant F, Zhao S (2004) Classifying RNA pseudoknotted structures. Theor Comput Sci 320: 35–50.
|
[78] | Witwer C, Hofacker IL, Stadler PF (2004) Prediction of consensus RNA structures including pseudoknots. IEEE/ACM Trans Comput Biol Bioinform 1: 66–77.
|
[79] | Gardner PP, Giegerich R (2004) A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics 5: 140.
|
[80] | Gardner P, Wilm A, Washietl S (2005) A benchmark of multiple sequence alignment programs upon structural RNAs. Nucleic Acids Res 33: 2433–2439.
|
[81] | Geyer CJ (1991) Markov chain Monte Carlo maximum likelihood. In: Keramigas E, editor. Computing science and statistics: Proceedings of the 23rd Symposium on the Interface. Fairfax (Virginia): Interface Foundation of North America. pp. 156–163.
|
[82] | Holland B, Moulton V (2003) Consensus networks: A method for visualising incompatibilities in collections of trees. In: Benson G, Page R, editors. Algorithms in Bioinformatics. Berlin: Springer. pp. 165–176.
|
[83] | Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: 254–267.
|