All Title Author
Keywords Abstract


An Online Bioinformatics Curriculum

DOI: 10.1371/journal.pcbi.1002632

Full-Text   Cite this paper   Add to My Lib

Abstract:

Online learning initiatives over the past decade have become increasingly comprehensive in their selection of courses and sophisticated in their presentation, culminating in the recent announcement of a number of consortium and startup activities that promise to make a university education on the internet, free of charge, a real possibility. At this pivotal moment it is appropriate to explore the potential for obtaining comprehensive bioinformatics training with currently existing free video resources. This article presents such a bioinformatics curriculum in the form of a virtual course catalog, together with editorial commentary, and an assessment of strengths, weaknesses, and likely future directions for open online learning in this field.

References

[1]  Markoff J (18 Apr 2012) Online education venture lures cash infusion and deals with 5 top universities. The New York Times Available: http://www.nytimes.com/2012/04/18/techno?logy/coursera-plans-to-announce-universi?ty-partners-for-online-classes.html. Accessed 16 August 2012.
[2]  Means B, Toyama Y, Murphy R, Bakia M, Jones K (SRI International) (2009) Evaluation of evidence-based practices in online learning: a meta-analysis and review of online learning studies. Final Report September 2010. Washington (D.C.): Department of Education. Contract number ED-04-CO-0040 Task 0006. 66 p. Available: http://www2.ed.gov/rschstat/eval/tech/ev?idence-based-practices/finalreport.pdf. Accessed 16 August 2012.
[3]  Mayer RE (2001) Multimedia learning. New York, NY: Cambridge University Press.
[4]  Garrett RH, Grisham CM (2004) Biochemistry. 3rd edition. St. Paul, MN: Brooks/Cole Publishing. Available: http://www.web.virginia.edu/Heidi/home.h?tm
[5]  Strachan T, Reed A (2010) Human molecular genetics. 4th edition. New York: Garland Science. 807 p.
[6]  Strang G (1991) Calculus. Wellesley, MA: Wellesley-Cambridge Press. 615 p. Available: http://ocw.mit.edu/resources/res-18-001-?calculus-online-textbook-spring-2005/tex?tbook. Accessed 16 August 2012.
[7]  Williamson SG (1987) Top-down calculus. Rockville, MD: Computer Science Press. 429 p. Available: http://cseweb.ucsd.edu/~gill/TopDownCalc?Site. Accessed 16 August 2012.
[8]  Kaw A, Kalu EE (2011) Numerical methods with applications. Raleigh, NC: Lulu. 740 p. Available: http://numericalmethods.eng.usf.edu/topi?cs/textbook_index.html. Accessed 16 August 2012.
[9]  Strang G (2007) Computational science and engineering. Wellesley, MA: Wellesley-Cambridge Press. 713 p.
[10]  Krijnen WP (2009) Applied statistics for bioinformatics using R. Available: http://cran.r-project.org/doc/contrib/Kr?ijnen-IntroBioInfStatistics.pdf.Accessed 16 August 2012.
[11]  Grinstead CM, Snell JL (1997) Introduction to probability. New York: American Mathematical Society. 510 p. Available: http://www.dartmouth.edu/~chance/teachin?g_aids/books_articles/probability_book/b?ook.html. Accessed 16 August 2012.
[12]  Wasserman L (2003) All of statistics. New York: Springer. 461 p.
[13]  Ewens WJ, Grant GR (2001) Statistical methods in bioinformatics New York: Springer. 476. doi: 10.1007/978-1-4757-3247-4
[14]  Gray RM (2010) Probability, random processes, and ergodic properties. 2nd edition. New York: Springer. 357 p. Available: http://ee.stanford.edu/~gray/arp.html. Accessed 16 August 2012.
[15]  Aho AV, Ullman JD (1994) Foundations of computer science. San Francisco, CA: W.H. Freeman. 786 p. Available: http://i.Stanford.edu/~ullman/focs.html. Accessed 16 August 2012.
[16]  Sipser M (1997) Introduction to the theory of computation. Boston, MA: PWS Publishing. 396 p.
[17]  Gurari E (1989) An introduction to the theory of computation. New York, NY: Computer Science Press. 314 p. Available: http://www.cse.ohio-state.edu/~gurari/th?eory-bk/theory-bk.html. Accessed 16 August 2012.
[18]  Graham RL, Knuth DE, Patashnik O (1989) Concrete mathematics. Reading, MA: Addison-Wesley. 625 p.
[19]  Bender EA, Williamson SG (2004) A short course in discrete mathematics. New York: Dover. 256 p. Available: http://cseweb.ucsd.edu/~gill/BWLectSite. Accessed 16 August 2012.
[20]  Flagolet P, Sedgewick R (2012) Analytic combinatorics. Cambridge: Cambridge University. 824 p. Available: http://ac.cs.princeton.edu/home. Accessed 16 August 2012.
[21]  Bender EA, Williamson SG (2006) Foundations of combinatorics with applications. New York: Dover. 480 p. Available: http://cseweb.ucsd.edu/~gill/FoundCombSi?te. Accessed 16 August 2012.
[22]  Wilf HS (2005) generatingfunctionology. 3rd edition. Natick, MA: A.K Peters/CRC Press. 245 p. Available: http://www.math.upenn.edu/~wilf/DownldGF?.html. Accessed 16 August 2012.
[23]  Easley D, Kleinberg J (2010) Networks, crowds and markets: reasoning about a highly connected world. Cambridge, UK: Cambridge University Press. 744 p. Available: http://www.cs.cornell.edu/home/kleinber/?networks%2Dbook. Accessed 16 August 2012.
[24]  Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge, UK: Cambridge University Press. 730 p. Available: http://www.stanford.edu/~boyd/cvxbook. Accessed 16 August 2012.
[25]  Luke S (2009) Essentials of metaheuristics. Raleigh, NC: Lulu. 230 p. Available: http://cs.gmu.edu/~sean/book/metaheurist?ics. Accessed 16 August 2012.
[26]  Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic programming. Raleigh, NC: Lulu. 252 p. Available: http://www.gp-field-guide.org.uk. Accessed 16 August 2012.
[27]  Cover TM, Thomas JA (1991) Elements of information theory. New York: Wiley. 748 p.
[28]  Gray RM (2011) Entropy and information. 2nd edition. New York: Springer. 436 p. Available: http://ee.stanford.edu/~gray/it.html. Accessed 16 August 2012.
[29]  MacKay D (2003) Information theory, inference, and learning algorithms. Cambridge, UK: Cambridge University Press. 640 p. Available: http://www.inference.phy.cam.ac.uk/macka?y/itila. Accessed 16 August 2012.
[30]  Oppenheim AV, Willsky AS, Hamid S (1996) Signals and systems (2nd edition). Englewood Cliffs, NJ: Prentice Hall.
[31]  Gray RM, Davisson LD (2010) Introduction to statistical signal processing. Cambridge, UK: Cambridge University Press. 478 p. Available: http://ee.stanford.edu/~gray/sp.html. Accessed 16 August 2012.
[32]  Evans D (2011) Introduction to computing: explorations in language, logic, and machines. Charleston, SC: CreateSpace. 266 p. Available: http://www.computingbook.org. Accessed 16 August 2012.
[33]  Abelson H, Sussman GJ, Sussman J (1996) Structure and interpretation of computer programs. 2nd edition. Cambridge, MA: MIT Press. Available: http://mitpress.mit.edu/sicp/full-text/b?ook/book.html. Accessed 16 August 2012.
[34]  Bates B, Sierra K (2003) Head first java: your brain on java - a learner's guide. Sebastopol, CA: O'Reilly Media.
[35]  Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms. 3rd edition. Cambridge, MA: MIT Press.
[36]  Gusfield D (1997) Algorithms on strings, trees and sequences: computer science and computational biology. Cambridge, UK: Cambridge University Press. 556 p.
[37]  Jones NC, Pevzner PA (2004) An introduction to bioinformatics algorithms. Cambridge, MA: MIT Press.
[38]  Russell S, Norvig P (2009) Artificial intelligence: a modern approach. 3rd edition. Englewood Cliffs, NJ: Prentice Hall. 1152 p.
[39]  Rowe NC (1988) Artificial intelligence through prolog. 2nd edition. Englewood Cliffs, NJ: Prentice Hall. 481 p. Available: http://faculty.nps.edu/ncrowe/book/book.?html. Accessed 16 August 2012.
[40]  Sowa JF (2000) Knowledge representation. Pacific Grove, CA: Brooks Cole Publishing. 594 p.
[41]  Abu-Mostafa YS, Magdon-Ismail M, Lin H-T (2012) Learning from data. Pasadena: AMLBook.
[42]  Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. 2nd edition. New York: Springer. 768 p. Available: http://www-stat.stanford.edu/~tibs/ElemS?tatLearn. Accessed 16 August 2012.
[43]  Bird S, Klein E, Loper E (2009) Natural language processing with python. Sebastopol, CA: O'Reilly Media. Available: http://www.nltk.org/book. Accessed 16 August 2012.
[44]  Searls DB (2012) Ten simple rules for online learning. PLoS Comp Biol 8: e1002631 doi:10.1371/journal.pcbi.1002631.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal