All Title Author
Keywords Abstract


Exploring Diversification and Genome Size Evolution in Extant Gymnosperms through Phylogenetic Synthesis

DOI: 10.1155/2012/292857

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gymnosperms, comprising cycads, Ginkgo, Gnetales, and conifers, represent one of the major groups of extant seed plants. Yet compared to angiosperms, little is known about the patterns of diversification and genome evolution in gymnosperms. We assembled a phylogenetic supermatrix containing over 4.5 million nucleotides from 739 gymnosperm taxa. Although 93.6% of the cells in the supermatrix are empty, the data reveal many strongly supported nodes that are generally consistent with previous phylogenetic analyses, including weak support for Gnetales sister to Pinaceae. A lineage through time plot suggests elevated rates of diversification within the last 100 million years, and there is evidence of shifts in diversification rates in several clades within cycads and conifers. A likelihood-based analysis of the evolution of genome size in 165 gymnosperms finds evidence for heterogeneous rates of genome size evolution due to an elevated rate in Pinus. 1. Introduction Recent advances in sequencing technology offer the possibility of identifying the genetic mechanisms that influence evolutionarily important characters and ultimately drive diversification. Within angiosperms, large-scale phylogenetic analyses have identified complex patterns of diversification (e.g., [1–3]), and numerous genomes are at least partially sequenced. Yet the other major clade of seed plants, the gymnosperms, have received far less attention, with few comprehensive studies of diversification and no sequenced genomes. Note that throughout this paper “gymnosperms” specifies only the approximately 1000 extant species within cycads, Ginkgo, Gnetales, and conifers. These comprise the Acrogymnospermae clade described by Cantino et al. [4]. Many gymnosperms have exceptionally large genomes (e.g., [5–7]), and this has hindered whole-genome sequencing projects, especially among economically important Pinus species. This large genome size is interesting because one suggested mechanism for rapid increases in genome size, polyploidy, is rare among gymnosperms [8]. Recent sequencing efforts have elucidated some of genomic characteristics associated with the large genome size in Pinus. Morse et al. [9] identified a large retrotransposon family in Pinus, that, with other retrotransposon families, accounts for much of the genomic complexity. Similarly, recent sequencing of 10 BAC (bacterial artificial chromosome) clones from Pinus taeda identified many conifer-specific LTR (long terminal repeat) retroelements [10]. These studies suggest that the large genome size may be caused by rapid expansion of

References

[1]  S. Magallón and A. Castillo, “Angiosperm diversification through time,” American Journal of Botany, vol. 96, no. 1, pp. 349–365, 2009.
[2]  C. D. Bell, D. E. Soltis, and P. S. Soltis, “The age and diversification of the angiosperms re-revisited,” American Journal of Botany, vol. 97, no. 8, pp. 1296–1303, 2010.
[3]  S. A. Smith, J. M. Beaulieu, A. Stamatakis, and M. J. Donoghue, “Understanding angiosperm diversification using small and large phylogenetic trees,” American Journal of Botany, vol. 98, no. 3, pp. 404–414, 2011.
[4]  P. D. Cantino, J. A. Doyle, S. W. Graham et al., “Towards a phylogenetic nomenclature of Tracheophyta,” Taxon, vol. 56, no. 3, pp. 822–846, 2007.
[5]  D. Ohri and T. N. Khoshoo, “Genome size in gymnosperms,” Plant Systematics and Evolution, vol. 153, no. 1-2, pp. 119–132, 1986.
[6]  B. G. Murray, “Nuclear DNA amounts in gymnosperms,” Annals of Botany, vol. 82, pp. 3–15, 1998.
[7]  M. R. Ahuja and D. B. Neale, “Evolution of genome size in conifers,” Silvae Genetica, vol. 54, no. 3, pp. 126–137, 2005.
[8]  T. N. Khoshoo, “Polyploidy in gymnosperms,” Evolution, vol. 13, no. 1, pp. 24–39, 1958.
[9]  A. M. Morse, D. G. Peterson, M. N. Islam-Faridi et al., “Evolution of genome size and complexity in Pinus,” PLoS ONE, vol. 4, no. 2, Article ID e4332, 2009.
[10]  A. Kovach, J. L. Wegrzyn, G. Parra et al., “The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences,” BMC Genomics, vol. 11, no. 1, article 420, 2010.
[11]  K. L. Joyner, X.-R. Wang, J. S. Johnston, H. J. Price, and C. G. Williams, “DNA content for Asian pines parallels new world relatives,” Canadian Journal of Botany, vol. 79, no. 2, pp. 192–196, 2001.
[12]  S. E. Hall, W. S. Dvorak, J. S. Johnston, H. J. Price, and C. G. Williams, “Flow cytometric analysis of DNA content for tropical and temperate new world pines,” Annals of Botany, vol. 86, no. 6, pp. 1081–1086, 2000.
[13]  I. Wakamiya, R. J. Newton, J. S. Johnston, and H. J. Price, “Genome size and environmental factors in the genus Pinus,” American Journal of Botany, vol. 80, no. 11, pp. 1235–1241, 1993.
[14]  E. Grotkopp, M. Rejmánek, M. J. Sanderson, and T. L. Rost, “Evolution of genome size in pines (Pinus) and its life-history correlates: supertree analyses,” Evolution, vol. 58, no. 8, pp. 1705–1729, 2004.
[15]  S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990.
[16]  J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Research, vol. 22, no. 22, pp. 4673–4680, 1994.
[17]  A. de Queiroz and J. Gatesy, “The supermatrix approach to systematics,” Trends in Ecology and Evolution, vol. 22, no. 1, pp. 34–41, 2007.
[18]  A. Stamatakis, “RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models,” Bioinformatics, vol. 22, no. 21, pp. 2688–2690, 2006.
[19]  J. Felsenstein, “Confidence limits on phylogenies: an approach using the bootstrap,” Evolution, vol. 39, no. 4, pp. 783–791, 1985.
[20]  M. J. Sanderson, “Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach,” Molecular Biology and Evolution, vol. 19, no. 1, pp. 101–109, 2002.
[21]  M. J. Sanderson, “R8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock,” Bioinformatics, vol. 19, no. 2, pp. 301–302, 2003.
[22]  H. Won and S. S. Renner, “Dating dispersal and radiation in the gymnosperm Gnetum (Gnetales)—clock calibration when outgroup relationships are uncertain,” Systematic Biology, vol. 55, no. 4, pp. 610–622, 2006.
[23]  E. Paradis, J. Claude, and K. Strimmer, “APE: analyses of phylogenetics and evolution in R language,” Bioinformatics, vol. 20, no. 2, pp. 289–290, 2004.
[24]  B. R. Moore, K. M. A. Chan, and M. J. Donoghue, “Detecting diversification rate variation in supertrees,” in Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, O. R. P. Bininda-Emonds, Ed., pp. 487–533, Kluwer Academic, Dodrecht, The Netherlands, 2004.
[25]  N. Bortolussi, E. Durand, M. G. B. Blum, and O. Fran?ois, “Aptreeshape: statistical analysis of phylogenetic treeshape,” Bioinformatics, vol. 22, no. 3, pp. 363–364, 2006.
[26]  M. D. Bennett and I. J. Leitch, “Plant DNA C-values database,” 2005, http://data.kew.org/cvalues/.
[27]  B. C. O'Meara, C. Ané, M. J. Sanderson, and P. C. Wainwright, “Testing for different rates of continuous trait evolution using likelihood,” Evolution, vol. 60, no. 5, pp. 922–933, 2006.
[28]  H. Wang, M. J. Moore, P. S. Soltis et al., “Rosid radiation and the rapid rise of angiosperm-dominated forests,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 10, pp. 3853–3858, 2009.
[29]  H. Schneider, E. Schuettpelz, K. M. Pryer, R. Cranfill, S. Magallón, and R. Lupia, “Ferns diversified in the shadow of angiosperms,” Nature, vol. 428, no. 6982, pp. 553–557, 2004.
[30]  B. Kolaczkowski and J. W. Thornton, “Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogenous,” Nature, vol. 431, no. 7011, pp. 980–984, 2004.
[31]  A. R. Lemmon, J. M. Brown, K. Stanger-Hall, and E. M. Lemmon, “The effect of ambiguous data on phylogenetic estimates obtained by maximum likelihood and bayesian inference,” Systematic Biology, vol. 58, no. 1, pp. 130–145, 2009.
[32]  W. P. Maddison, “Gene trees in species trees,” Systematic Biology, vol. 46, no. 3, pp. 523–536, 1997.
[33]  E. A. Stone, “Why the phylogenetic regression appears robust to tree misspecification,” Systematic Biology, vol. 60, no. 3, pp. 245–260, 2011.
[34]  D. L. Rabosky, “LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification rates,” Evolutionary Bioinformatics, vol. 2, pp. 247–250, 2006.
[35]  W. P. Maddison, P. E. Midford, and S. P. Otto, “Estimating a binary character's effect on speciation and extinction,” Systematic Biology, vol. 56, no. 5, pp. 701–710, 2007.
[36]  D. L. Rabosky, “Extinction rates should not be estimated from molecular phylogenies,” Evolution, vol. 64, no. 6, pp. 1816–1824, 2010.

Full-Text

comments powered by Disqus