All Title Author
Keywords Abstract

Atomistic Modeling of Corrosion Events at the Interface between a Metal and Its Environment

DOI: 10.1155/2012/204640

Full-Text   Cite this paper   Add to My Lib


Atomistic simulation is a powerful tool for probing the structure and properties of materials and the nature of chemical reactions. Corrosion is a complex process that involves chemical reactions occurring at the interface between a material and its environment and is, therefore, highly suited to study by atomistic modeling techniques. In this paper, the complex nature of corrosion processes and mechanisms is briefly reviewed. Various atomistic methods for exploring corrosion mechanisms are then described, and recent applications in the literature surveyed. Several instances of the application of atomistic modeling to corrosion science are then reviewed in detail, including studies of the metal-water interface, the reaction of water on electrified metallic interfaces, the dissolution of metal atoms from metallic surfaces, and the role of competitive adsorption in controlling the chemical nature and structure of a metallic surface. Some perspectives are then given concerning the future of atomistic modeling in the field of corrosion science. 1. Introduction to Corrosion Mechanisms The following statement was made by Pletnev in regards to the corrosion of iron by chlorides in acidic media. It is a common point of view that the chemical nature and structure of the surface of a metal, which is in contact with an electrolyte, are decisive in the kinetics of electrochemical reactions that proceed on this surface [1]. This “common point of view” is manifested in the great body of work in corrosion science that proposes mechanisms that explain how corrosion reactions occur (see, for instance, the monograph edited by Marcus) [2]. Corrosion in aqueous environments proceeds via an electrochemical mechanism, in which the coupled anodic and cathodic reactions take place at unique sites within the material/environment interface. The reactions themselves involve transfer of electrons or ions—often both—across the electrochemical double layer [3]. For this reason, the mechanisms via which corrosion proceeds can be strongly influenced by perturbations in the surface and interfacial environment. In many cases, the chemical reactions that together constitute a proposed mechanism or reaction scheme should be considered as placeholders: representative entities that subsume a host of microkinetic processes such as mass transport, surface adsorption and desorption, and bond-making/bond-breaking chemical reactions. Pltenev’s “chemical nature and structure” of the materials/environment interface are, in fact, rather complex quantities. Figure 1 contains an illustration that


[1]  M. A. Pletnev, S. G. Morozov, and V. P. Alekseev, “Peculiar effect of chloride ions on the anodic dissolution of iron in solutions of various acidity,” Protection of Metals, vol. 36, no. 3, pp. 202–208, 2000.
[2]  P. Marcus, “Corrosion mechanics in theory and practice,” in Corrosion Technology, P. A. Schweitzer, Ed., Marcel-Dekker, New York, NY, USA, 2nd edition, 2002.
[3]  J. O. M. Bockris, A. K. N. Reddy, and M. Gamboa-Aldeco, Modern Electrochemistry. Vol. 2A, Kluwer Academic; Plenum Publishers, New York, NY, USA, 2000.
[4]  C. D. Taylor, “Cohesive relations for surface atoms in the iron-technetium binary system,” Journal of Metallurgy, vol. 2011, Article ID 954170, 8 pages, 2011.
[5]  J. Postlethwaite, S. Ne?i?, G. Adamopoulos, and D. J. Bergstrom, “Predictive models for erosion-corrosion under disturbed flow conditions,” Corrosion Science, vol. 35, no. 1–4, pp. 627–633, 1993.
[6]  Y. Feng, K. S. Siow, W. K. Teo, K. L. Tan, and A. K. Hsieh, “Corrosion mechanisms and products of copper in aqueous solutions at various pH values,” Corrosion, vol. 53, no. 5, pp. 389–398, 1997.
[7]  S. P. Trasatti and E. Sivieri, “Corrosion behaviour of titanium in non-aqueous solvents,” Materials Chemistry and Physics, vol. 92, no. 2-3, pp. 475–479, 2005.
[8]  L. Stockert and H. B?hni, “Susceptibility to crevice corrosion and metastable pitting of stainless steels,” Materials Science Forum, vol. 44-45, pp. 313–328, 1989.
[9]  T. R. Beck and S. G. Chan, “Experimental observations and analysis of hydrodynamic effects on growth of small pits,” Corrosion, vol. 37, no. 11, pp. 665–671, 1981.
[10]  C. Y. Chao, L. F. Lin, and D. D. Macdonald, “A point defect model for anodic passive films: I. Film growth kinetics,” Journal of the Electrochemical Society, vol. 128, no. 6, pp. 1187–1194, 1981.
[11]  L. F. Lin, C. Y. Chao, and D. D. Macdonald, “A point defect model for anodic passive films: II. Chemical breakdown and pit initiation,” Journal of the Electrochemical Society, vol. 128, no. 6, pp. 1194–1198, 1981.
[12]  D. D. MacDonald, “The history of the point defect model for the passive state: a brief review of film growth aspects,” Electrochimica Acta, vol. 56, no. 4, pp. 1761–1772, 2011.
[13]  V. A. Bogdanovskaya, M. R. Tarasevich, L. A. Reznikova, and L. N. Kuznetsova, “Composition, surface segregation, and electrochemical properties of binary PtM/C (M?=?Co, Ni, Cr) catalysts,” Russian Journal of Electrochemistry, vol. 46, no. 9, pp. 1011–1020, 2010.
[14]  F. Friedersdorf and K. Sieradzki, “Film-induced brittle intergranular cracking of silver-gold alloys,” Corrosion (Houston), vol. 52, no. 5, pp. 331–336, 1996.
[15]  S. Jain, N. D. Budiansky, J. L. Hudson, and J. R. Scully, “Surface spreading of intergranular corrosion on stainless steels,” Corrosion Science, vol. 52, no. 3, pp. 873–885, 2010.
[16]  E. M. Lehockey, A. M. Brennenstuhl, and I. Thompson, “On the relationship between grain boundary connectivity, coincident site lattice boundaries, and intergranular stress corrosion cracking,” Corrosion Science, vol. 46, no. 10, pp. 2383–2404, 2004.
[17]  D. N. Wasnik, V. Kain, I. Samajdar, B. Verlinden, and P. K. De, “Controlling grain boundary energy to make austenitic stainless steels resistant to intergranular stress corrosion cracking,” Journal of Materials Engineering and Performance, vol. 12, no. 4, pp. 402–407, 2003.
[18]  M. Baumg?rtner and H. Kaesche, “Aluminum pitting in chloride solutions: morphology and pit growth kinetics,” Corrosion Science, vol. 31, pp. 231–236, 1990.
[19]  R. Ambat, A. J. Davenport, G. M. Scamans, and A. Afseth, “Effect of iron-containing intermetallic particles on the corrosion behaviour of aluminium,” Corrosion Science, vol. 48, no. 11, pp. 3455–3471, 2006.
[20]  F. Thébault, B. Vuillemin, R. Oltra, C. Allely, and K. Ogle, “Modeling bimetallic corrosion under thin electrolyte films,” Corrosion Science, vol. 53, no. 1, pp. 201–207, 2011.
[21]  M. A. Arafin and J. A. Szpunar, “A novel microstructure - Grain boundary character based integrated modeling approach of intergranular stress corrosion crack propagation in polycrystalline materials,” Computational Materials Science, vol. 47, no. 4, pp. 890–900, 2010.
[22]  V. Randle, “Grain boundary engineering: an overview after 25 years,” Materials Science and Technology, vol. 26, no. 3, pp. 253–261, 2010.
[23]  E. A. West and G. S. Was, “IGSCC of grain boundary engineered 316L and 690 in supercritical water,” Journal of Nuclear Materials, vol. 392, no. 2, pp. 264–271, 2009.
[24]  J. K. N?rskov, F. Abild-Pedersen, F. Studt, and T. Bligaard, “Density functional theory in surface chemistry and catalysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 3, pp. 937–943, 2011.
[25]  S. A. Wasileski, C. D. Taylor, and M. Neurock, “Modeling electrocatalytic reaction systems from first principles,” in Device and Materials Modeling in PEM Fuel Cells, S. J. Paddison, Ed., Springer, Berlin, Germany, 2009.
[26]  R. A. van Santen and M. Neurock, Molecular Heterogeneous Catalysis: A Conceptual and Computational Approach, Wiley-VCH, Weinheim, Germany, 2006.
[27]  E. Gileadi, “Problems in interfacial electrochemistry that have been swept under the carpet,” Journal of Solid State Electrochemistry, vol. 15, pp. 1359–1371, 2011.
[28]  T. J. Campbell, G. Aral, S. Ogata, R. K. Kalia, A. Nakano, and P. Vashishta, “Oxidation of aluminum nanoclusters,” Physical Review B, vol. 71, no. 20, Article ID 205413, 14 pages, 2005.
[29]  S. Serebrinsky, E. A. Carter, and M. Ortiz, “A quantum-mechanically informed continuum model of hydrogen embrittlement,” Journal of the Mechanics and Physics of Solids, vol. 52, no. 10, pp. 2403–2430, 2004.
[30]  C. Taylor, R. G. Kelly, and M. Neurock, “First-principles calculations of the electrochemical reactions of water at an immersed Ni (111) H2O interface,” Journal of the Electrochemical Society, vol. 153, no. 12, pp. E207–E214, 2006.
[31]  C. Taylor, R. G. Kelly, and M. Neurock, “Theoretical analysis of the nature of hydrogen at the electrochemical interface between water and a Ni(111) single-crystal electrode,” Journal of the Electrochemical Society, vol. 154, no. 3, pp. F55–F64, 2007.
[32]  C. D. Taylor, R. G. Kelly, and M. Neurock, “First-principles prediction of equilibrium potentials for water activation by a series of metals,” Journal of the Electrochemical Society, vol. 154, no. 12, pp. F217–F221, 2007.
[33]  G. Jomard, T. Petit, A. Pasturel, L. Magaud, G. Kresse, and J. Hafner, “First-principles calculations to describe zirconia pseudopolymorphs,” Physical Review B, vol. 59, no. 6, pp. 4044–4052, 1999.
[34]  S. K. R. S. Sankaranarayanan and S. Ramanathan, “On the low-temperature oxidation and ultrathin oxide growth on zirconium in the presence of atomic oxygen: a modeling study,” Journal of Physical Chemistry C, vol. 112, no. 46, pp. 17877–17882, 2008.
[35]  J. Greeley, “First-principles investigations of electrocatalysis and corrosion,” in Proceedings of the 214th ECS Meeting Proton Exchange Membrane Fuel Cells (PEMFC '08), vol. 16, pp. 209–213, Honolulu, Hawaii, USA, October 2008.
[36]  C. D. Taylor, et al., “Calculation of surface properties of selected waste-form alloy systems,” Report for DOE: Fundamental Waste Form Science, Los Alamos National Laboratory, Los Alamos, NM, USA, 2011.
[37]  R. Spatschek, E. Brener, and A. Karma, “Phase field modeling of crack propagation,” Philosophical Magazine, vol. 91, no. 1, pp. 75–95, 2011.
[38]  R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press, Cambridge, UK, 2004.
[39]  E. Kaxiras, Atomic and Electronic Structure of Solids, Cambridge University Press, Cambridge, UK, 2003.
[40]  I. N. Levine, Quantum Chemistry, Prentice Hall, Upper Saddle River, NJ, USA, 5th edition, 2000.
[41]  P. B. Balbuena, K. P. Johnston, and P. J. Rossky, “Molecular dynamics simulation of electrolyte solutions in ambient and supercritical water. 1. Ion solvation,” Journal of Physical Chemistry, vol. 100, no. 7, pp. 2706–2715, 1996.
[42]  D. Domínguez-Ariza, C. Hartnig, C. Sousa, and F. Illas, “Combining molecular dynamics and ab initio quantum-chemistry to describe electron transfer reactions in electrochemical environments,” Journal of Chemical Physics, vol. 121, no. 2, pp. 1066–1073, 2004.
[43]  P. F. Weck, E. Kim, F. Poineau, and K. R. Czerwinski, “Structural evolution and properties of subnanometer Tcn (n?=?2–15) clusters,” Physical Chemistry Chemical Physics, vol. 11, no. 43, pp. 10003–10008, 2009.
[44]  A. B. Anderson and N. C. Debnath, “Mechanism of iron dissolution and passivation in an aqueous environment: active and transition ranges,” Journal of the American Chemical Society, vol. 105, no. 1, pp. 18–22, 1983.
[45]  A. B. Anderson and N. K. Ray, “Structures and reactions of H3O+, H2O, and OH on an Fe electrode. Potential dependence,” Journal of Physical Chemistry, vol. 86, no. 4, pp. 488–494, 1982.
[46]  E. E. Ebenso, T. Arslan, F. Kandemirli, N. Caner, and I. Love, “Quantum chemical studies of some rhodanine azosulpha drugs as corrosion inhibitors for mild steel in acidic medium,” International Journal of Quantum Chemistry, vol. 110, no. 5, pp. 1003–1018, 2010.
[47]  E. E. Ebenso, T. Arslan, F. Kandemirli et al., “Theoretical studies of some sulphonamides as corrosion inhibitors for mild steel in acidic medium,” International Journal of Quantum Chemistry, vol. 110, no. 14, pp. 2614–2636, 2010.
[48]  M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Reviews of Modern Physics, vol. 64, no. 4, pp. 1045–1097, 1992.
[49]  I. Milas, B. Hinnemann, and E. A. Carter, “Diffusion of Al, O, Pt, Hf, and y atoms on α-Al2O3(0001): implications for the role of alloying elements in thermal barrier coatings,” Journal of Materials Chemistry, vol. 21, no. 5, pp. 1447–1456, 2011.
[50]  O. Runevall and N. Sandberg, “Self-diffusion in MgO—a density functional study,” Journal of Physics, vol. 23, no. 34, pp. 345–402, 2011.
[51]  D. A. Andersson, B. P. Uberuaga, P. V. Nerikar, et al., “U and Xe transport in : density functional theory calculations,” Journal of Chemical Physics, vol. 84, no. 5, Article ID 054105, 12 pages, 2011.
[52]  C. D. Taylor, T. Lookman, and R. S. Lillard, “Ab initio calculations of the uranium-hydrogen system: thermodynamics, hydrogen saturation of α-U and phase-transformation to UH3,” Acta Materialia, vol. 58, no. 3, pp. 1045–1055, 2010.
[53]  G. Lu and E. Kaxiras, “Hydrogen embrittlement of aluminum: the crucial role of vacancies,” Physical Review Letters, vol. 94, no. 15, Article ID 155501, 4 pages, 2005.
[54]  G. Lu, D. Orlikowski, I. Park, O. Politano, and E. Kaxiras, “Energetics of hydrogen impurities in aluminum and their effect on mechanical properties,” Physical Review B, vol. 65, no. 6, Article ID 064102, pp. 641021–641028, 2002.
[55]  G. Lu, Q. Zhang, N. Kioussis, and E. Kaxiras, “Hydrogen-enhanced local plasticity in aluminum: an ab initio study,” Physical Review Letters, vol. 87, no. 9, Article ID 095501, 4 pages, 2001.
[56]  J. Greeley and J. K. N?rskov, “Electrochemical dissolution of surface alloys in acids: thermodynamic trends from first-principles calculations,” Electrochimica Acta, vol. 52, no. 19, pp. 5829–5836, 2007.
[57]  A. Bouzoubaa, D. Costa, B. Diawara, N. Audiffren, and P. Marcus, “Insight of DFT and atomistic thermodynamics on the adsorption and insertion of halides onto the hydroxylated NiO(111) surface,” Corrosion Science, vol. 52, no. 8, pp. 2643–2652, 2010.
[58]  M. I. Baskes and R. A. Johnson, “Modified embedded atom potentials for HCP metals,” Modelling and Simulation in Materials Science and Engineering, vol. 2, no. 1, article 011, pp. 147–163, 1994.
[59]  S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Physical Review B, vol. 33, no. 12, pp. 7983–7991, 1986.
[60]  B. J. Lee and M. I. Baskes, “Second nearest-neighbor modified embedded-atom-method potential,” Physical Review B, vol. 62, no. 13, pp. 8564–8567, 2000.
[61]  J. W. Halley, A. Mazzolo, Y. Zhou, and D. Price, “First-principles simulations of the electrode|electrolyte interface,” Journal of Electroanalytical Chemistry, vol. 450, no. 2, pp. 273–280, 1998.
[62]  J. W. Halley, B. B. Smith, S. Walbran, et al., “Theory and experiment on the cuprous-cupric electron transfer rate at a copper electrode,” Journal of Chemical Physics, vol. 110, no. 13, pp. 6538–6552, 1999.
[63]  D. L. Price and J. W. Halley, “Molecular dynamics, density functional theory of the metal-electrolyte interface,” The Journal of Chemical Physics, vol. 102, no. 16, pp. 6603–6612, 1995.
[64]  B. B. Smith and J. W. Halley, “Simulation study of the ferrous ferric electron transfer at a metal-aqueous electrolyte interface,” The Journal of Chemical Physics, vol. 101, no. 12, pp. 10915–10924, 1994.
[65]  E. Spohr, “Computer simulation of the water/platinum interface. Dynamical results,” Chemical Physics, vol. 141, no. 1, pp. 87–94, 1990.
[66]  E. Spohr, “Molecular dynamics simulations of water and ion dynamics in the electrochemical double layer,” Solid State Ionics, vol. 150, no. 1-2, pp. 1–12, 2002.
[67]  E. Spohr, “Some recent trends in computer simulations of aqueous double layers,” Electrochimica Acta, vol. 49, no. 1, pp. 23–27, 2003.
[68]  E. Spohr and K. Heinzinger, “Molecular dynamics simulation of a water/metal interface,” Chemical Physics Letters, vol. 123, no. 3, pp. 218–221, 1986.
[69]  E. Spohr, G. Tóth, and K. Heinzinger, “Structure and dynamics of water and hydrated ions near platinum and mercury surfaces as studied by MD simulations,” Electrochimica Acta, vol. 41, no. 14, pp. 2131–2144, 1996.
[70]  X. M. Bai, A. F. Voter, R. G. Hoagland, M. Nastasi, and B. P. Uberuaga, “Efficient annealing of radiation damage near grain boundaries via interstitial emission,” Science, vol. 327, no. 5973, pp. 1631–1634, 2010.
[71]  T. P. Schulze, “Efficient kinetic Monte Carlo simulation,” Journal of Computational Physics, vol. 227, no. 4, pp. 2455–2462, 2008.
[72]  A. F. Voter, “Introduction to the kinetic monte carlo method,” in Radiation Effects in Solids, K. E. Sickafus and E. A. Kotomin, Eds., Springer, NATO Publishing Unit, Dordrecht, The Netherlands, 2005.
[73]  B. Temel, H. Meskine, K. Reuter, M. Scheffler, and H. Metiu, “Does phenomenological kinetics provide an adequate description of heterogeneous catalytic reactions?” Journal of Chemical Physics, vol. 126, no. 20, Article ID 204711, 2007.
[74]  B. Diawara, M. Legrand, J. J. Legendre, and P. Marcus, “Use of quantum chemistry results in 3D modeling of corrosion of iron-chromium alloys,” Journal of the Electrochemical Society, vol. 151, no. 3, pp. B172–B178, 2004.
[75]  D. M. Artymowicz, J. Erlebacher, and R. C. Newman, “Relationship between the parting limit for de-alloying and a particular geometric high-density site percolation threshold,” Philosophical Magazine, vol. 89, no. 21, pp. 1663–1693, 2009.
[76]  J. Erlebacher, “An atomistic description of dealloying porosity evolution, the critical potential, and rate-limiting behavior,” Journal of the Electrochemical Society, vol. 151, no. 10, pp. C614–C626, 2004.
[77]  S. A. Policastro, J. C. Carnahan, G. Zangari et al., “Surface diffusion and dissolution kinetics in the electrolyte-metal interface,” Journal of the Electrochemical Society, vol. 157, no. 10, pp. C328–C337, 2010.
[78]  W. M. Young and E. W. Elcock, “Monte Carlo studies of vacancy migration in binary ordered alloys: I,” Proceedings of the Physical Society, vol. 89, no. 3, article 329, pp. 735–746, 1966.
[79]  R. S. Lillard, G. F. Wang, and M. I. Baskes, “The role of metallic bonding in the cristallographic pitting of magnesium,” Journal of the Electrochemical Society, vol. 153, no. 9, pp. B358–B364, 2006.
[80]  C. D. Taylor and M. Neurock, “Theoretical insights into the structure and reactivity of the aqueous/metal interface,” Current Opinion in Solid State and Materials Science, vol. 9, no. 1-2, pp. 49–65, 2005.
[81]  M. A. Henderson, “The interaction of water with solid surfaces: fundamental aspects revisited,” Surface Science Reports, vol. 46, no. 1–8, pp. 1–308, 2002.
[82]  S. Izvekov, A. Mazzolo, K. VanOpdorp, and G. A. Voth, “Ab initio molecular dynamics simulation of the Cu(110)-water interface,” Journal of Chemical Physics, vol. 114, no. 7, pp. 3248–3257, 2001.
[83]  M. F. Toney, J. N. Howard, J. Richer et al., “Voltage-dependent ordering of water molecules at an electrode-electrolyte interface,” Nature, vol. 368, no. 6470, pp. 444–446, 1994.
[84]  A. Michaelides, A. Alavi, and D. A. King, “Insight into H2O-ice adsorption and dissociation on metal surfaces from first-principles simulations,” Physical Review B, vol. 69, no. 11, Article ID 113404, 4 pages, 2004.
[85]  A. Michaelides, V. A. Ranea, P. L. De Andres, and D. A. King, “General model for water monomer adsorption on close-packed transition and noble metal surfaces,” Physical Review Letters, vol. 90, no. 21, Article ID 216102, 4 pages, 2003.
[86]  A. Michaelides, A. Alavi, and D. A. King, “Different surface chemistries of water on Ru : from monomer adsorption to partially dissociated bilayers,” Journal of the American Chemical Society, vol. 125, no. 9, pp. 2746–2755, 2003.
[87]  S. M. Bruemmer and L. E. Thomas, “High-resolution analytical electron microscopy characterization of corrosion and cracking at buried interfaces,” Surface and Interface Analysis, vol. 31, no. 7, pp. 571–581, 2001.
[88]  C. D. Taylor and M. Rossi, “A mechanistic approach to iodine induced stress corrosion cracking of zircaloy cladding: introductory assessment and preliminary results,” Report prepared for the Consortium for the Advanced Simulation of LWRs—Materials Performance and Optimization (C.R. Stanek), Los Alamos National Laboratory, Los Alamos, NM, USA, 2011.
[89]  G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Physical Review B, vol. 47, no. 1, pp. 558–561, 1993.
[90]  G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metalamorphous- semiconductor transition in germanium,” Physical Review B, vol. 49, no. 20, pp. 14251–14269, 1994.
[91]  G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, vol. 6, no. 1, pp. 15–50, 1996.
[92]  G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, vol. 54, no. 16, pp. 11169–11186, 1996.
[93]  G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B, vol. 59, no. 3, pp. 1758–1775, 1999.
[94]  S. Walbran, A. Mazzolo, J. W. Halley, and D. L. Price, “Model for the electrostatic response of the copper-water interface,” Journal of Chemical Physics, vol. 109, no. 18, pp. 8076–8080, 1998.
[95]  J. Weissenrieder, A. Mikkelsen, J. N. Andersen, P. J. Feibelman, and G. Held, “Experimental evidence for a partially dissociated water bilayer on Ru ,” Physical Review Letters, vol. 93, no. 19, pp. 1–196102, 2004.
[96]  C. D. Taylor, S. A. Wasileski, J. S. Filhol, and M. Neurock, “First principles reaction modeling of the electrochemical interface: consideration and calculation of a tunable surface potential from atomic and electronic structure,” Physical Review B, vol. 73, Article ID 165402, 16 pages, 2006.
[97]  A. Seyeux, V. Maurice, L. H. Klein, and P. Marcus, “In situ scanning tunnelling microscopic study of the initial stages of growth and of the structure of the passive film on Ni(111) in 1?mM NaOH(aq),” Journal of Solid State Electrochemistry, vol. 9, no. 5, pp. 337–346, 2005.
[98]  C. D. Taylor, R. G. Kelly, and M. Neurock, “A first-principles analysis of the chemisorption of hydroxide on copper under electrochemical conditions: a probe of the electronic interactions that control chemisorption at the electrochemical interface,” Journal of Electroanalytical Chemistry, vol. 607, no. 1-2, pp. 167–174, 2007.
[99]  C. D. Taylor, First principles modeling of the structure and reactivity of water at the metal/water interface, Dissertation, University of Virginia, Charlottesville, Va, USA, 2006.
[100]  G. Niaura, “Surface-enhanced Raman spectroscopic observation of two kinds of adsorbed OH? ions at copper electrode,” Electrochimica Acta, vol. 45, no. 21, pp. 3507–3519, 2000.
[101]  J. Rossmeisl, J. K. N?rskov, C. D. Taylor, M. J. Janik, and M. Neurock, “Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111),” Journal of Physical Chemistry B, vol. 110, no. 43, pp. 21833–21839, 2006.
[102]  E. Gileadi, “Can an electrode reaction occur without electron transfer across the metal/solution interface?” Chemical Physics Letters, vol. 393, no. 4–6, pp. 421–424, 2004.
[103]  E. Gileadi, “Charge and mass transfer across the metal/solution interface,” Israel Journal of Chemistry, vol. 48, no. 3-4, pp. 121–131, 2008.
[104]  A. Michaelides, V. A. Ranea, P. L. De Andres, and D. A. King, “General model for water monomer adsorption on close-packed transition and noble metal surfaces,” Physical Review Letters, vol. 90, no. 21, Article ID 216102, 4 pages, 2003.
[105]  C. D. Taylor, M. Neurock, and J. R. Scully, “First-principles investigation of the fundamental corrosion properties of a model Cu38 nanoparticle and the (111), (113) surfaces,” Journal of the Electrochemical Society, vol. 155, no. 8, pp. C407–C414, 2008.
[106]  R. S. Lillard, G. F. Wang, and M. I. Baskes, “The role of metallic bonding in the cristallographic pitting of magnesium,” Journal of the Electrochemical Society, vol. 153, no. 9, pp. B358–B364, 2006.
[107]  W. Schmickler, K. P?tting, and M. Mariscal, “A new simulation model for electrochemical metal deposition,” Chemical Physics, vol. 320, no. 2-3, pp. 149–154, 2006.
[108]  M. I. Baskes, S. G. Srinivasan, S. M. Valone, and R. G. Hoagland, “Multistate modified embedded atom method,” Physical Review B, vol. 75, no. 9, Article ID 094113, 2007.
[109]  P. Biedermann, E. Torres, and A. Blumenau, “Oxygen reduction at thiol/Au(111) SAMs, atomistic modelling and experiment,” in Proceedings of the 212th Meeting of the Electrochemical Society on Modeling and Simulation of Dissolution and Corrosion Processes, The Electrochemical Society, Washington, DC, USA, 2007.
[110]  S. M. Valone and S. R. Atlas, “Electron correlation, reference states and empirical potentials,” Philosophical Magazine, vol. 86, no. 17-18, pp. 2683–2711, 2006.
[111]  C. D. Taylor, “The transition from metal-metal bonding to metal-solvent interactions during a dissolution event as assessed from electronic structure,” Chemical Physics Letters, vol. 469, no. 1–3, pp. 99–103, 2009.
[112]  American Petroleum Institute, Damage Mechanisms Affecting Fixed Equipment in the Refining Industry, American Petroleum Institute, Washington, DC, USA, 2003.
[113]  C. D. Taylor, “Predictions of surface electrochemistry of saturated and alkaline NH4Cl solutions interacting with Fe(110) from ab initio calculations,” Corrosion. In press.
[114]  R. A. White, Materials Selection for Petroleum Refineries and Gathering Facilities, NACE International, Houston, Tex, USA, 1998.
[115]  O. Forsén, J. Aromaa, and M. Tavi, “Corrosion resistance of different materials in dilute ammonium chloride-bearing environments,” Corrosion Science, vol. 35, no. 1–4, pp. 297–301, 1993.
[116]  V. A. Shimbarevich and K. L. Tseitlin, “Influence of ammonia concentration and temperature on corrosion of carbon steel in ammonium chloride solutions,” Protection of Metals, vol. 15, no. 5, pp. 455–458, 1979.
[117]  V. A. Shimbarevich and K. L. Tseitlin, “nfluence of ammonia on corrosion of stainless steels and titanium in ammonium chloride solutions at 200°C,” Protection of Metals, vol. 17, no. 2, pp. 144–148, 1981.
[118]  M. G. Alvarez and J. R. Galvele, “The mechanism of pitting of high purity iron in NaCl solutions,” Corrosion Science, vol. 24, no. 1, pp. 27–48, 1984.
[119]  A. C. T. Van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, “ReaxFF: a reactive force field for hydrocarbons,” Journal of Physical Chemistry A, vol. 105, no. 41, pp. 9396–9409, 2001.


comments powered by Disqus

Contact Us


微信:OALib Journal