Composite membranes have been prepared by impregnation of Nafion into the expanded polytetrafluoroethylene (EPTFE) matrix. Nafion loading in the composite membranes was kept constant at 2?mg/cm2. The lower amount of electrolyte per unit area in the composite membranes offers cost advantages compared to conventional membrane of 50?μm thickness with an electrolyte loading of ~9?mg/cm2. Composite membranes (30?μm thickness) were found to have higher thermal stability and mechanical strength compared to the conventional membranes (50?μm thickness). The performance of the membrane electrode assembly made with these composite membranes was comparable to that of the conventional membranes. Single cells fabricated from these MEAs were tested for their performance and durability before scaling them up for large area. The performance of a 20-cell stack of active area 330?cm2 fabricated using these membranes is reported. 1. Introduction Polymer electrolyte membrane fuel cell (PEMFC) presents an attractive alternative to traditional power sources, due to high efficiency and low pollution. The efficiency of the fuel cell vehicle using direct hydrogen fuel cells has been reported to be twice that of the gasoline vehicles [1, 2]. Fuel cell efficiency is high even at partial loads compared to the internal combustion engines, which operate at high efficiency only at full loads. The only emissions in vehicles operating on hydrogen as fuel is water and is hence nonpolluting. Fuel cell stacks of sub-kW and 1?kW level find applications as power sources in electronic equipments and as power source in portable applications. A 3?kW fuel cell stack has been projected for applications in the telecommunication sectors as highly reliable and durable on-site power generation technology is required for these applications. Stacks of 5?kW and above are used as power sources in various stationary and vehicular applications. Combined heat and power generation using fuel cells is especially attractive for stationary power generation. Further, these short stacks hybridized with electrical storage devices (batteries and/or ultra-capacitors) can have several benefits, including capturing regenerative braking energy, enhancing fuel economy, providing a more flexible operating strategy, overcoming fuel cell cold-start and transient shortfalls, and lowering the cost per unit power. In a PEMFC, the proton-conducting membrane is located between the cathode and anode and transports protons from anode to cathode. The membranes for high performance PEM fuel cells have to meet the requirements of
References
[1]
L. Carrette, K. A. Friedrich, and U. Stimming, “Fuel cells: principles, types, fuels, and applications,” Fuel Cells, vol. 1, no. 4, pp. 163–193, 2000.
[2]
K. S. Jeong and B. S. Oh, “Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle,” Journal of Power Sources, vol. 105, no. 1, pp. 58–65, 2002.
[3]
K. V. Kordesch and G. R. Simader, Fuel Cells and Their Applications, VCH, Weinheim, Germany, Chapter 4, 1996.
[4]
O. Savadogo, “Emerging membranes for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems,” Journal of New Materials for Electrochemical Systems, vol. 1, no. 1, pp. 47–66, 1998.
[5]
P. Costamagna and S. Srinivasan, “Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: part I. Fundamental scientific aspects,” Journal of Power Sources, vol. 102, no. 1-2, pp. 242–252, 2001.
[6]
B. Bahar, A. R. Hobson, J. A. Kolde, and D. Zuckerbrod, “Ultra-thin integral composite membrane,” 1996, US Patent 5547551.
[7]
J. M. Gascoyne, G. A. Hards, J. Denton, and T. R. Ralph, “Composite membranes,” 1999, european patent 875524.
[8]
H.-L. Lin, T. L. Yu, W. K. Chang, C. P. Cheng, C. R. Hu, and G. B. Jung, “Preparation of a low proton resistance PBI/PTFE composite membrane,” Journal of Power Sources, vol. 164, no. 2, pp. 481–487, 2007.
[9]
K. M. Nouel and P. S. Fedkiw, “Nafion-based composite polymer electrolyte membranes,” Electrochimica Acta, vol. 43, no. 16-17, pp. 2381–2387, 1998.
[10]
B. K. Dutta, D. Randolph, and S. K. Sikdar, “Thin and composite high-flux membranes of perfluorosulfonated ion-exchange polymer,” Journal of Membrane Science, vol. 54, no. 1-2, pp. 51–61, 1990.
[11]
H. Tang, M. Pan, S. P. Jiang, X. Wang, and Y. Ruan, “Fabrication and characterization of PFSI/ePTFE composite proton exchange membranes of polymer electrolyte fuel cells,” Electrochimica Acta, vol. 52, no. 16, pp. 5304–5311, 2007.
[12]
Z. Jie, T. Haolin, and P. Mu, “Fabrication and characterization of self-assembled Nafion-SiO2-ePTFE composite membrane of PEM fuel cell,” Journal of Membrane Science, vol. 312, no. 1-2, pp. 41–47, 2008.
[13]
K. Pattabiraman and K. Ramya, “Phosphotungstic acid modified expanded PTFE based nafion composites,” Journal of New Materials for Electrochemical Systems, vol. 14, no. 4, pp. 217–222, 2011.
[14]
K. Ramya, G. Velayutham, C. K. Subramaniam, N. Rajalakshmi, and K. S. Dhathathreyan, “Effect of solvents on the characteristics of Nafion/PTFE composite membranes for fuel cell applications,” Journal of Power Sources, vol. 160, no. 1, pp. 10–17, 2006.
[15]
H. L. Lin, T. L. Yu, K. S. Shen, and L. N. Huang, “Effect of Triton-X on the preparation of Nafion/PTFE composite membranes,” Journal of Membrane Science, vol. 237, no. 1-2, pp. 1–7, 2004.
[16]
E. A. Cho, U.-S. Jeon, S. A. Hong, I.-H. Oh, and S.-G. Kang, “Performance of a 1 kW-class PEMFC stack using TiN-coated 316 stainless steel bipolar plates,” Journal of Power Sources, vol. 142, no. 1-2, pp. 177–183, 2005.
[17]
M. Wang, K.-D. Woo, D. K. Kim, X. Zhu, and S. Sui, “Development of a kilowatt class PEMFC stack using Au-coated LF11 Al alloy bipolar plates,” Metals and Materials International, vol. 12, no. 4, pp. 345–350, 2006.
[18]
X. Li, C. C. Ke, S. G. Qu, J. Li, Z. G. Shao, and B. L. Yi, http://www.intechopen.com/download/pdf/pdfs_id/20373.
[19]
G. C. Bandlamudi, M. Saborni, P. Beckhaus, F. Mahlendorf, and A. Heinzel, “PBI/H3PO4 gel based polymer electrolyte membrane fuel cells under the influence of reformates,” Journal of Fuel Cell Science and Technology, vol. 7, no. 1, pp. 0145011–0145012, 2010.
[20]
P. Mocotéguy, B. Ludwig, J. Scholta, Y. Nedellec, D. J. Jones, and J. Rozière, “Long-term testing in dynamic mode of HT-PEMFC H3PO 4/PBI celtec-P based membrane electrode assemblies for micro-CHP applications,” Fuel Cells, vol. 10, no. 2, pp. 299–311, 2010.
[21]
L. J. Bonville, H. R. Kunz, Y. Song et al., “Development and demonstration of a higher temperature PEM fuel cell stack,” Journal of Power Sources, vol. 144, no. 1, pp. 107–112, 2005.
[22]
L. N. Huang, L. C. Chen, T. L. Yu, and H. L. Lin, “Nafion/PTFE/silicate composite membranes for direct methanol fuel cells,” Journal of Power Sources, vol. 161, no. 2, pp. 1096–1105, 2006.
[23]
A. Gruger, A. Régis, T. Schmatko, and P. Colomban, “Nanostructure of Nafion membranes at different states of hydration: an IR and Raman study,” Vibrational Spectroscopy, vol. 26, no. 2, pp. 215–225, 2001.
[24]
E. Endoh, S. Terazono, H. Widjaja, and Y. Takimoto, “Degradation study of MEA for PEMFCs under low humidity conditions,” Electrochemical and Solid-State Letters, vol. 7, no. 7, pp. A209–A211, 2004.
[25]
V. Ramani, H. R. Kunz, and J. M. Fenton, “Effect of particle size reduction on the conductivity of Nafion/phosphotungstic acid composite membranes,” Journal of Membrane Science, vol. 266, no. 1-2, pp. 110–114, 2005.
[26]
J. Healy, C. Hayden, T. Xie et al., “Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells,” Fuel Cells, vol. 5, no. 2, pp. 302–308, 2005.
[27]
G. J. M. Janssen, E. F. Sitters, and A. Pfrang, “Proton-exchange-membrane fuel cells durability evaluated by load-on/off cycling,” Journal of Power Sources, vol. 191, no. 2, pp. 501–509, 2009.