All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

Differential susceptibility of adults and nymphs of Blattella germanica (L.) (Blattodea: Blattellidae) to infection by Metarhizium anisopliae and assessment of delivery strategies

Actividad biológica del diflubenzuron sobre Blattella germanica (Dictyoptera: Blattellidae)

Actividad biológica del diflubenzuron sobre Blattella germanica (Dictyoptera: Blattellidae)

Susceptibility of Field Populations of Blattella germanica (Blattaria: Blattellidae) to Spinosad

Observaciones sobre aspectos biológicos de Blattella germanica (Dictyoptera: Blattellidae) en condiciones de laboratorio

Observaciones sobre aspectos biológicos de Blattella germanica (Dictyoptera: Blattellidae) en condiciones de laboratorio

Determinación de la resistencia a insecticidas y mecanismos de resistencia en cepas de Blattella germanica (Dictyoptera: Blattellidae) Determination of insecticide-resistance and resistance mechanisms of Blattella germanica (Dictyoptera: Blattellidae)

Efecto de 2 dietas sobre aspectos biológicos de Blattella germanica (Dictyoptera: Blattellidae) en condiciones de laboratorio

Deep Sequencing of Organ- and Stage-Specific microRNAs in the Evolutionarily Basal Insect Blattella germanica (L.) (Dictyoptera, Blattellidae)

Resistencia a deltametrina de cepas de Blattella germanica (Dictyoptera: Blattellidae) en la ciudad de Cali, Colombia Deltamethrin resistance in Blattella germanica (Dyctioptera: Blattellidae) strains from Cali city, Colombia

More...

RETRACTED:Comparative Proteomic Analysis in Blattella germanica (Blattodea: Blattellidae) under Short- and Long-Term Beta-Cypermethrin Insecticide Stress

DOI: 10.4236/as.2019.103035, PP. 437-449

Keywords: Insecticide Resistance, Blattella germanica, Pyrethroid, 2D-PAGE

Full-Text   Cite this paper   Add to My Lib

Abstract:

Short Retraction Notice?

This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's?Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.

Please see the?article page?for more details. The full retraction notice in PDF is preceding the original paper which is marked \"RETRACTED\".?

References

[1]  Zhang, F., Huang, Y.H., Liu, S.Z., Zhang, L., Li, B.T., Zhao, X.X., Fu, Y., Liu, J.J. and Zhang, X.X. (2013) Pseudomonas Reactans, a Bacterial Strain Isolated from the Intestinal Flora of Blattella germanica with Anti-Beauveria Bassiana Activity. Environ. Entomol., 42, 453-459. https://doi.org/10.1603/EN12347
[2]  Gaffin, J.M., Kanchongkittiphon, W. and Phipatanakul, W. (2014) Reprint of: Perinatal and Early Childhood Environmental Factors Influencing Allergic Asthma Immunopathogenesis. Int. Immunopharmacol., 23, 337-346. https://doi.org/10.1016/j.intimp.2014.09.028
[3]  Taha, M., Samir, T., Djaouida, M., Benammar, L., Megri, R., Boukoucha, M. and Debabza, M. (2015) External Bacterial Flora and Antimicrobial Susceptibility Patterns of Staphylococcus spp. and Pseudomonas spp. Isolated from Two Household Cockroaches, Blattella germanica and Blatta orientalis. Biomed. Environ. Sci., 28, 316-320.
[4]  Tsuji, R., Yamada, T. and Kawamura, S. (2012) Mammal Toxicology of Synthetic Pyrethroids. Top. Curr. Chem., 314, 83-111. https://doi.org/10.1007/128_2011_269
[5]  Nasirian, H. (2017) Infestation of Cockroaches (Insecta: Blattaria) in the Human Dwelling Environments: A Systematic Review and Meta-Analysis. Act Trop., 167, 86-98. https://doi.org/10.1016/j.actatropica.2016.12.019
[6]  Zhang, F., Sun, X.X., Zhang, X.C., Zhang, S., Lu, J., Xia, Y.M., Huang, Y.H. and Wang X.J. (2018) The Interactions between Gut Microbiota and Entomopathogenic Fungi: A Potential Approach for Biological Control of Blattella germanica (L.). Pest Manag. Sci., 74, 438-447. https://doi.org/10.1002/ps.4726
[7]  Pélissié, B., Crossley, M.S., Cohen, Z.P. and Schoville, S.D. (2018) Rapid Evolution in Insect Pests: The Importance of Space and Time in Population Genomics Studies. Curr. Opin. Insect Sci., 26, 8-16. https://doi.org/10.1016/j.cois.2017.12.008
[8]  Terra, W.R., Dias, R.O., Oliveira, P.L., Clélia Ferreira, and Venancio, T.M. (2018) Tran-scriptomic Analyses Uncover Emerging Roles of Mucins, Lysosome/Secretory Addressing and Detoxification Pathways in Insect Midguts. Curr. Opin. Insect Sci., 29. https://doi.org/10.1016/j.cois.2018.05.015
[9]  Nicholson, S.J., Hartson, S.D. and Puterka, G.J. (2012) Proteomic Analysis of Secreted Saliva from Russian Wheat Aphid (Diuraphis noxia Kurd.) Biotypes That Differ in Virulence to Wheat. J. Proteomics., 75, 2252-2268. https://doi.org/10.1016/j.jprot.2012.01.031
[10]  Kundu, S., Chakraborty, D., Kundu, A. and Pal, A. (2013) Proteomics Approach Combined with Biochemical Attributes to Elucidate Compatible and Incompatible Plant-Virus Interactions between Vigna mungo and Mungbean Yellow Mosaic India Virus. Proteome Sci., 11, 15. https://doi.org/10.1186/1477-5956-11-15
[11]  Zhang, F., Wang, X.J., Huang, Y.H., Zhao, D.Q., Zhang, S.S., Gong, X.S., Xie, L., Kang, D.M. and Jing, X. (2014) Differential Expression of Hemolymph Proteins between Susceptible and Insecticide-Resistant Blattella germanica (Blattodea: Blattellidae). Environ. Entomol., 43, 1117-1123. https://doi.org/10.1603/EN13351
[12]  Gillet, L.C., Leitner, A. and Aebersol, R. (2016) Mass Spectrometry Applied to Bottom-Up Proteomics: Entering the High-Throughput Era for Hypothesis Testing. Annu. Rev. Anal. Chem., 9, 449-472. https://doi.org/10.1146/annurev-anchem-071015-041535
[13]  Hugo, R.L.E. and Birrell, G.W. (2018) Proteomics of Anopheles Vectors of Malaria. Trends Parasitol., 34, 961-981. https://doi.org/10.1016/j.pt.2018.08.009
[14]  Gao, K., Deng, X.Y., Shang, M.K., Qin, G.X., Hou, C.X. and Guo, X.J. (2017) iTRAQ-Based Quantitative Proteomic Analysis of Midgut in Silkworm Infected with Bombyx mori Cytoplasmic Polyhedrosis Virus. J. Proteomics., 152, 300-311. https://doi.org/10.1016/j.jprot.2016.11.019
[15]  Mindaye, S.T., Spiric, J., David, N.A., Rabin, R.L. and Slater. J.E. (2017) Accurate Quantification of 5 German Cockroach (GCr) Allergens in Complex Extracts Using Multiple Reaction Monitoring Mass Spectrometry (MRM MS). Clin. Exp. Allergy., 47, 1661-1670. https://doi.org/10.1111/cea.12986
[16]  Zhang, X.C., Li, X.X., Gong, Y.W., Li, Y.R., Zhang, K.L., Huang, Y.H. and Zhang, F. (2018) Isolation, Identification and Virulence of a New Metarhizium anisopliae Strain on the German Cockroach. J. Econ. Entomol., toy280. https://doi.org/10.1093/jee/toy280
[17]  Bradford, M M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem., 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
[18]  Shevchenko, A., Wilm, M., Vorm, O. and Mann, M. (1996) Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels. Anal. Chem., 68,850-858. https://doi.org/10.1021/ac950914h
[19]  Ishimoto, M., Yamada, T. and Kaga, A. (1999) Insecticidal Activity of an α-Amylase Inhibitor-Like Protein Resembling a Putative Precursor of α-Amylase Inhibitor in the Common Bean, Phaseolus Vulgaris l. 1 the Nucleotide Sequence Data of Ail (gp29) from a Common Bean Cultivar Will Appear in the Embl, Genbank, and Ddbj Nucleotide Sequence Databases under Accession Number d49828. 1. Biochim Biophys Acta, 1432, 104-112. https://doi.org/10.1016/S0167-4838(99)00093-X
[20]  Guedes, R.N.C., Oliveira, E.E., Guedes, N.M.P., Ribeiro, B. and Serrao, J.E. (2006) Cost and Mitigation of Insecticide Resistance in the Maize Weevil, Sitophilus zeamais. Physiol. Entomol., 31, 30-38. https://doi.org/10.1111/j.1365-3032.2005.00479.x
[21]  Gahan, L.J., Pau-chet, Y., Vogel, H. and Heckel, D.G. (2010) An ABC Transporter Mutation Is Correlated with Insect Resistance to Bacillus thuringiensis Cry1ac Toxin. Plos. Genet., 6, e1001248. https://doi.org/10.1371/journal.pgen.1001248
[22]  Bariami, V., Jones, C.M., Poupardin, R., Vontas, J. and Ranson, H. (2012) Gene Amplification, ABC Transporters and cyTochrome p450s: Unraveling the Molecular Basis of Pyre-throid Resistance in the Dengue Vector, Aedes aegypti. PLoS Negl. Trop. Dis., 6, e1692. https://doi.org/10.1371/journal.pntd.0001692
[23]  Denecke, S., Fu-setto, R. and Batterham, P. (2017) Describing the Role of Drosophila melano-gaster ABC Transporters in Insecticide Biology Using CRISPR-Cas9 Knockouts. Insect Biochem. Mol. Biol., 91, 1-9. https://doi.org/10.1016/j.ibmb.2017.09.017
[24]  Groen, S.C., Laplante, E.R., Alexandre, N.M., Agrawal, A.A., Dobler, S. and Whiteman, N.K. (2017) Multi-drug Transporters and Organic Anion Transporting Polypeptides Protect In-sects against the Toxic Effects of Cardenolides. Insect Biochem. Mol. Biol., 81, 51-61. https://doi.org/10.1016/j.ibmb.2016.12.008
[25]  Chaudhry, M.Q. (1997) Review a Review of the Mechanisms Involved in the Action of Phosphine as an Insecticide and Phosphine Resistance in Stored-Product Insects. Pestic. Sci., 49, 213-228. https://doi.org/10.1002/(SICI)1096-9063(199703)49:3<213::AID-PS516>3.0.CO;2-#
[26]  Konus, M., Koy, C., Mikkat, S., Kreutzer, M., Zimmermann, R., Iscan, M. and Glocker, M.O. (2013) Molecular Adaptations of Helicoverpa armigera Midgut Tissue under Pyrethroid Insecticide Stress Characterized by Differential Proteome Analysis and Enzyme Activity Assays. Comp. Biochem. Physiol. Part. D., 8, 152-162. https://doi.org/10.1016/j.cbd.2013.04.001
[27]  Vontas, J.G., Small, G.J. and Hemingway, J. (2001) Glutathione s-Transferases as Antioxidant Defence Agents Confer Pyrethroid Resistance in Nilaparvata lugens. Biochem. J., 357, 65-72. https://doi.org/10.1042/bj3570065
[28]  Qi, Y.C., Liu, W.Q., Qiu, L.Y., Zhang, S.M., Ma, L. and Zhang, H. (2010) Overexpression of Glutathione S-Transferase Gene Increases Salt Tolerance of Arabidopsis. Russ. J. Plant Physiol., 57, 233-240. https://doi.org/10.1134/S102144371002010X
[29]  Pavlidi, N., Vontas, J. and Leeuwen, T.V. (2018) The Role of Glutathione S-Transferases (GSTs) in Insecti-cide Resistance in Crop Pests and Disease Vectors. Curr. Opin. Insect Sci., 27, 97-102. https://doi.org/10.1016/j.cois.2018.04.007
[30]  Mazari, A.M.A. and Mannervik, B. (2016) Drosophila GSTs Display Outstanding Catalytic Efficien-cies with the Environmental Pollutants 2, 4, 6-Trinitrotoluene and 2, 4-Dinitrotoluene. Biochem. Biophys. Rep., 5, 141-145. https://doi.org/10.1016/j.bbrep.2015.12.003
[31]  Geiser, D.L. and Win-zerling, J.J. (2012) Insect Transferrins: Multifunctional Proteins. Biochim. Bio-phys. Acta., 1820, 437-451. ttps://doi.org/10.1016/j.bbagen.2011.07.011
[32]  Thomas, C.E. and Aust, S.D. (1986) Reductive Release of Iron from Ferritin by Cation Free-Radicals of Paraquat and Other Bipyridyls. J. Biol. Chem., 261, 13064-13070.
[33]  Ho, K.J., Liu, T.K., Huang, T.S. and Lu, F.J. (2003) Humic Acid Mediates Iron Release from Ferritin and Promotes Lipid Peroxidation in Vitro: A Possible Mechanism for Humic Acid-Induced Cytotoxicity. Arch. Toxicol., 77, 100-109. https://doi.org/10.1007/s00204-002-0378-y
[34]  Li, H., Zhang, F., Guo, H., Zhu, Y., Yuan, J., Yang, G., et al. (2013) Molecular Characterization of Hepcidin Gene in Common Carp (Cyprinus carpio L.) and Its Expression Pattern Re-sponding to Bacterial Challenge. Fish Shellfish Immunol., 35,1030-1038. https://doi.org/10.1016/j.fsi.2013.07.001
[35]  Cha’On, U., Valmas, N., Col-lins, P.J., Reilly, P.E.B., Hammock, B.D. and Ebert, P.R. (2007) Disruption of Iron Homeostasis Increases Phosphine Toxicity in Caenorhabditis Elegans. Toxicol. Sci., 96, 194-201. ttps://doi.org/10.1093/toxsci/kfl187
[36]  Nair, A.V., Lee, K.W. and Veen, H.W.V. (2016) Structural and Functional Landscape of MFS and MATE Efflux Pumps. In: Li, X.Z., Elkins, C.A. and Zgurskaya, H.I., Eds., Ef-flux-Mediated Antimicrobial Resistance in Bacteria: Mechanisms, Regulation and Clinical Implications, 1st edn, Springer, New York, 29-44. https://doi.org/10.1007/978-3-319-39658-3_2
[37]  Tota, B., Amelio, D., Cerra, M.C. and Garofalo, F. (2018) The Morphological and Functional Significance of the NOS/NO System in the Respiratory, Osmoregulatory, and Contrac-tile Organs of the African Lungfish. Acta Histochem., 120, 654-666. https://doi.org/10.1016/j.acthis.2018.08.011
[38]  Suman, S., Seth, R.K. and Chandna, S. (2008) Role of Nitric Oxide Synthase in Insect Cell Radioresistance: An In-Silico Analysis. Bioinformation, 3, 8-13. https://doi.org/10.6026/97320630003008
[39]  Vijay, S., Rawat, M., Adak, T., Dixit, R., Nanda, N., Srivastava, H., Sharma, J.K., Prasad, G.B. and Sharma, A. (2011) Parasite Killing in Malaria Non-Vector Mosquito Anopheles culicifacies Species B: Implication of Nitric Oxide Synthase Upregulation. PLoS ONE, 6, e18400. https://doi.org/10.1371/journal.pone.0018400
[40]  Sigg, M.A., Menchen, T., Lee, C., Johnson, J., Jungnickel, M.K., Choksi, S.P., et al. (2017) Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways. Dev. Cell., 43, 744-762. https://doi.org/10.1016/j.devcel.2017.11.014
[41]  Gottardo, M., Persico, V., Callaini, G. and Riparbelli, M.G. (2018) The “Transition Zone” of the Cilium-Like Regions in the Drosophila Spermatocytes and the Role of the C-Tubule in Ax-oneme Assembly. Exp. Cell Res., 371, 262-268. https://doi.org/10.1016/j.yexcr.2018.08.020
[42]  Plavsin, I., Stasková, T., Sery, M., Smykal, V., Hackenberger, B.K. and Kodrík, D. (2015) Hormonal Enhancement of Insecticide Efficacy in Tribolium Castaneum: Oxidative Stress and Metabolic Aspects. Comp. Biochem. Physiol. C. Toxicol. Pharmacol., 170, 19-27. https://doi.org/10.1016/j.cbpc.2015.01.005
[43]  Traverso, L., Sierra, I., Sterkel, M., Francini, F. and Ons, S. (2016) Neuropeptidomics in Triatoma infestans. Comparative Transcriptomic Analysis among Triatomines. J. Physiol. Paris., 110, 83-98. https://doi.org/10.1016/j.jphysparis.2016.12.005
[44]  Alon, M., Benting, J., Lueke, B., Ponge, T., Alon, F. and Morin, S. (2006) Multiple Origins of Pyre-throid Resistance in Sympatric Biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect. Biochem. Mol. Biol., 36, 71-79. https://doi.org/10.1016/j.ibmb.2005.10.007
[45]  Nasirian, H. (2010) An Overview of German Cockroach, Blattella germanica, Studies Conducted in Iran. Pak.J.Biol.Sci., 13, 1077-1084. https://doi.org/10.3923/pjbs.2010.1077.1084
[46]  Xie, W. and Zhou, J. (2018) Aberrant Regulation of Autophagy in Mammalian Diseases. Biol. Lett., 14, 20170540. https://doi.org/10.1098/rsbl.2017.0540
[47]  Zhang, X.C. and Zhang, F. (2018) The Potential Control Strategies Based on the Interaction be-tween Indoor Cockroaches and Their Symbionts in China. Crop Protection, 55, 55. https://doi.org/10.1016/bs.aiip.2018.07.001
[48]  Zhu, Q., Sun, L., Lian, J., Gao, X., Zhao, L., Ding, M., et al. (2016) The Phospholipase c (fgplc1) Is Involved in Regulation of Development, Pathogenicity, and Stress Responses in Fusarium Graminearum. Fungal Genet. Biol., 97, 1-9. https://doi.org/10.1016/j.fgb.2016.10.004

Full-Text

comments powered by Disqus