All Title Author
Keywords Abstract

-  2016 

Research of W5 Model Based on Dynamic Context Awareness

DOI: 10.3969/j.issn.1001-0548.2016.02.020

Keywords: 动态情境,诱因,用户行为挖掘,W5模型

Full-Text   Cite this paper   Add to My Lib


Twitter、Sina Micro-blog等社交网络应用为基于位置的服务提供了大量的情境信息,如用户ID(who)、签到时间(when)、GPS坐标(where)、微博内容主题词(what)和微博内容诱因词(why)等,简称5W。它们为用户的行为和偏好研究提供了契机。该文提出了基于5W动态情境感知信息的W5概率模型,并采用包含情境信息的联合概率分布分别从时间、空间和活动等方面挖掘用户动态行为,用于用户和位置的预测。该文实验基于两个数据集:Geo-text(GT)和Sina-tweets(ST),在数据集上进行了用户预测(UP)和位置预测(LP)实验。实验结果表明,W5模型在UP和LP两方面准确率均高于W4模型。同时,W5模型在时间误差和空间距离误差两方面也取得了较好的性能。


[1]  SIBREN I, RICHARD A B, RAMóN C, et al. Identifying important places in peoples lives from cellular network data[J]. Pervasive Computing, 2011(6696):133-151.
[2]  WANG J, ZENG C, HE C, et al. Context-aware role mining for mobile service recommendation[C]//Annual ACM Symposium Applied Computing. New York, USA:ACM, 2012:173-178.
[3]  陈恩红, 徐童, 田继雷, 等. 移动情境感知的个性化推荐技术[J]. 中国计算机学会通讯, 2013, 9(3):18-24. CHEN En-hong, XU Tong, TIAN Ji-lei, et al. Personalization recommendation technique of mobile context-awareness[J]. Communication of China Computer Federation, 2013, 9(3):18-24.
[4]  QUAN Yuan, GAO Cong, MA Zong-yang, et al. Who, where, when and what:Discover spatiotemporal topics for twitter users[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). Chicago, USA:ACM, 2013:605-613.
[5]  王峰, 余伟, 李石君. 基于PMR架构的兴趣点推荐研究[J]. 中国科学:信息科学, 2015, 45(11):1503-1520. WANG Feng, YU Wei, LI Shi-jun. Research of POI-s recommendation based on PMR framework[J]. Science China:Information Science, 2015, 45(11):1503-1520.
[6]  GREGORY D A, ANIND K D, PETER J B, et al. Towards a better understanding of context and cotext-awareness[J]. Handheld and Ubiquitous Computing, 2000(1707):304-307.
[7]  MARMASSE N, SCHMANDT C. Location-aware information delivery with commotion[J]. Handheld and Ubiquitous Computing, 2000(1927):157-171.
[8]  CHO E, SETH A, MYER, et al. Friendship and mobility:User movement in location-based social networks[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). San Diego, USA:ACM, 2011:1082-1090.
[9]  COHEN J. A coefficient of agreement for nominal scales[J]. Educational and Psychological Measurement, 1960, 20(1):37-46.
[10]  COHEN J. Weighted kappa:Nominal scale agreement with provision for scaled disagreement or partial credit[J]. Psychological Bulletin, 1968, 70(4):213-220.
[11]  HONG Liang-jie, AMR A, SIVA G, et al. Discovering geographical topics in the twitter stream[C]//International Conference on World Wide Web (WWW). New York, USA:ACM, 2012:769-778.


comments powered by Disqus

Contact Us


微信:OALib Journal