All Title Author
Keywords Abstract

-  2017 

基于幅度图像引导的磁敏感加权图像相位解缠算法
Magnitude image-guided phase unwrapping algorithm of susceptibility weighted images

DOI: 10.7507/1001-5515.201611011

Keywords: 磁敏感加权成像,幅度图像,相位解缠,相位误差
susceptibility weighted imaging
,magnitude image,phase unwrapping,phase error

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了更好地利用相位信息补偿血流造成的影响,本文对磁敏感加权成像(SWI)中存在的相位缠绕问题展开了研究。为提高解缠绕的准确性,本文提出了幅度图像引导的磁敏感加权图像相位解缠算法。基本思路如下:① 通过改进旋转不变非局部主成分分析滤波(PRI-NL-PCA)降低噪声影响;② 结合 C-V 模型水平集提取相位图像中对应的实性组织区域,从而规避背景噪声对相位解缠方法的影响;③ 采用相位补偿的方法约束 K 空间重建出的相位图像。最后,利用四种统计量作为量化指标,评价解缠绕方法的可靠性:相位误差的突变点个数、均值(M)、方差(Var),以及阳性百分比(Pos)和阴性百分比(Neg)。通过对比仿真数据和 226 组真实头部磁敏感数据,结果表明,本文算法相对于经典的枝切法和最小二乘法,解缠绕结果具有较高的准确性。
To better use the phase information to compensate the influence of blood flow, the phase unwrapping problem in susceptibility weighted imaging (SWI) is studied in this paper. In order to improve the accuracy of unwrapping, this paper proposes a magnitude image-guided phase unwrapping algorithm of SWI. The basic idea is as follows: (1) reduce the influence of noise by improving the rotational invariant non-local principal component analysis method (PRI-NL-PCA); (2) extract the corresponding solid region in the phase image to avoid the influence of the background noise on the phase unwrapping method; (3) use the phase compensation method to constrain the phase image reconstructed by the K-space. Finally, the reliability of the unwrapping method is evaluated by using four kinds of statistics as quantification index: the number, mean (M), variance (Var), and positive percentage (Pos) and negative percentage (Neg) of phasic error points. By comparing the simulated data with 226 sets of true head SWI data, the results show that the proposed algorithm has high accuracy compared with the classical branch cut method and the least squares method.

References

[1]  1. Haacke E M, Xu Y, Cheng Y C N, et al. Susceptibility weighted imaging (SWI). Magnetic Resonance in Medicine, 2004, 52(3): 612-618.
[2]  2. Gilbert G, Savard G, Bard C, et al. Quantitative comparison between a multiecho sequence and a single-echo sequence for susceptibility-weighted phase imaging. Magn Reson Imaging, 2012, 30(5): 722-730.
[3]  3. Wharton S, Schafer A R. Susceptibility mapping in the human brain using threshold-based k-space division. Magnetic Resonance in Medicine, 2010, 63(5): 1292-1304.
[4]  4. Schweser F, Deistung A, Lehr B W, et al. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain Iron metabolism? Neuroimage, 2011, 54(4): 2789-2807.
[5]  7. Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Science, 1988, 23(4): 713-720.
[6]  9. Zhao Ming, Huang Lei, Zhang Qican, et al. Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies. Appl Opt, 2011, 50(33): 6214-6224.
[7]  14. Ye Xiufen, Zhang Zhehui, Liu P X, et al. Sonar image segmentation based on GMRF and level-set models. Ocean Engineering, 2010, 37(10): 891-901.
[8]  15. Henkelman R M. Measurement of signal Intensities in the presence of noise in MR images. Med Phys, 1985, 12(2): 232-233.
[9]  16. Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magnetic Resonance in Medicine, 1996, 34(2): 910-914.
[10]  17. Manjón J V, Coupé P, Buades A. MRI noise estimation and denoising using non-local PCA. Med Image Anal, 2015, 22(1): 35-47.
[11]  18. Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one. Multiscale Model Simul, 2005, 4(2): 490-530.
[12]  22. Bouthemy P. Adaptive spatio-temporal restoration for 4D fluorescence microscopic imaging. Lect Notes Comput Sci, 2005, 8(Pt 1): 893-901.
[13]  5. Rydell J, Knutsson H, Pettersson J, et al. Phase sensitive reconstruction for water/fat separation in MR imaging using inverse gradient//Ayache N, Ourselin S, Maeder A. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2007. MICCAI 2007. Lecture Notes in Computer Science, vol 4791. Berlin, Heidelberg: Springer, Berlin, Heidelberg, 2007: 210-218.
[14]  6. Bagher-Ebadian H, Jiang Quan, Ewing J R. A modified Fourier-based phase unwrapping algorithm with an application to MRI venography. Journal of Magnetic Resonance Imaging, 2008, 27(3): 649-652.
[15]  8. Cusack R, Huntley J M, Goldrein H T. Improved noise-immune phase-unwrapping algorithm. Appl Opt, 1989, 28(16): 781-789.
[16]  10. Witoszynskyj S, Rauscher A, Reichenbach J R, et al. Phase unwrapping of MR images using Phi UN--a fast and robust region growing algorithm. Med Image Anal, 2009, 13(2): 257-268.
[17]  11. Jenkinson M. Fast, automated, N-dimensional phase-unwrapping algorithm. Magnetic Resonance in Medicine, 2003, 49(1): 193-197.
[18]  12. Ghiglia D C, Romero L A. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. Journal of the Optical Society of America A, 1994, 11(1): 107-117.
[19]  13. Chan T F, Vese L A. Active contours without edges. IEEE Trans Image Process, 2001, 10(2): 266-277.
[20]  19. Zhang Lei, Dong Weisheng, Zhang D, et al. Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recognit, 2010, 43(4): 1531-1549.
[21]  20. Manjón J V, Coupé P, Buades A, et al. New methods for MRI denoising based on sparseness and self-similarity. Med Image Anal, 2012, 16(1): 18-27.
[22]  21. Coupe P, Yger P, Prima S, et al. An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans Med Imaging, 2008, 27(4): 425-441.
[23]  23. Buades A, Coll B, Morel J M. Nonlocal image and movie denoising. Int J Comput Vis, 2008, 76(2): 123-139.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal