全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于幅度图像引导的磁敏感加权图像相位解缠算法

DOI: doi:10.7507/1001-5515.201611011

Keywords: 磁敏感加权成像, 幅度图像, 相位解缠, 相位误差

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了更好地利用相位信息补偿血流造成的影响,本文对磁敏感加权成像(SWI)中存在的相位缠绕问题展开了研究。为提高解缠绕的准确性,本文提出了幅度图像引导的磁敏感加权图像相位解缠算法。基本思路如下:① 通过改进旋转不变非局部主成分分析滤波(PRI-NL-PCA)降低噪声影响;② 结合 C-V 模型水平集提取相位图像中对应的实性组织区域,从而规避背景噪声对相位解缠方法的影响;③ 采用相位补偿的方法约束 K 空间重建出的相位图像。最后,利用四种统计量作为量化指标,评价解缠绕方法的可靠性:相位误差的突变点个数、均值(M)、方差(Var),以及阳性百分比(Pos)和阴性百分比(Neg)。通过对比仿真数据和 226 组真实头部磁敏感数据,结果表明,本文算法相对于经典的枝切法和最小二乘法,解缠绕结果具有较高的准确性

References

[1]  1. Haacke E M, Xu Y, Cheng Y C N, et al. Susceptibility weighted imaging (SWI). Magnetic Resonance in Medicine, 2004, 52(3): 612-618.
[2]  2. Gilbert G, Savard G, Bard C, et al. Quantitative comparison between a multiecho sequence and a single-echo sequence for susceptibility-weighted phase imaging. Magn Reson Imaging, 2012, 30(5): 722-730.
[3]  3. Wharton S, Schafer A R. Susceptibility mapping in the human brain using threshold-based k-space division. Magnetic Resonance in Medicine, 2010, 63(5): 1292-1304.
[4]  4. Schweser F, Deistung A, Lehr B W, et al. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain Iron metabolism? Neuroimage, 2011, 54(4): 2789-2807.
[5]  7. Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Science, 1988, 23(4): 713-720.
[6]  9. Zhao Ming, Huang Lei, Zhang Qican, et al. Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies. Appl Opt, 2011, 50(33): 6214-6224.
[7]  14. Ye Xiufen, Zhang Zhehui, Liu P X, et al. Sonar image segmentation based on GMRF and level-set models. Ocean Engineering, 2010, 37(10): 891-901.
[8]  15. Henkelman R M. Measurement of signal Intensities in the presence of noise in MR images. Med Phys, 1985, 12(2): 232-233.
[9]  16. Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magnetic Resonance in Medicine, 1996, 34(2): 910-914.
[10]  17. Manjón J V, Coupé P, Buades A. MRI noise estimation and denoising using non-local PCA. Med Image Anal, 2015, 22(1): 35-47.
[11]  18. Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one. Multiscale Model Simul, 2005, 4(2): 490-530.
[12]  22. Bouthemy P. Adaptive spatio-temporal restoration for 4D fluorescence microscopic imaging. Lect Notes Comput Sci, 2005, 8(Pt 1): 893-901.
[13]  5. Rydell J, Knutsson H, Pettersson J, et al. Phase sensitive reconstruction for water/fat separation in MR imaging using inverse gradient//Ayache N, Ourselin S, Maeder A. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2007. MICCAI 2007. Lecture Notes in Computer Science, vol 4791. Berlin, Heidelberg: Springer, Berlin, Heidelberg, 2007: 210-218.
[14]  6. Bagher-Ebadian H, Jiang Quan, Ewing J R. A modified Fourier-based phase unwrapping algorithm with an application to MRI venography. Journal of Magnetic Resonance Imaging, 2008, 27(3): 649-652.
[15]  8. Cusack R, Huntley J M, Goldrein H T. Improved noise-immune phase-unwrapping algorithm. Appl Opt, 1989, 28(16): 781-789.
[16]  10. Witoszynskyj S, Rauscher A, Reichenbach J R, et al. Phase unwrapping of MR images using Phi UN--a fast and robust region growing algorithm. Med Image Anal, 2009, 13(2): 257-268.
[17]  11. Jenkinson M. Fast, automated, N-dimensional phase-unwrapping algorithm. Magnetic Resonance in Medicine, 2003, 49(1): 193-197.
[18]  12. Ghiglia D C, Romero L A. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. Journal of the Optical Society of America A, 1994, 11(1): 107-117.
[19]  13. Chan T F, Vese L A. Active contours without edges. IEEE Trans Image Process, 2001, 10(2): 266-277.
[20]  19. Zhang Lei, Dong Weisheng, Zhang D, et al. Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recognit, 2010, 43(4): 1531-1549.
[21]  20. Manjón J V, Coupé P, Buades A, et al. New methods for MRI denoising based on sparseness and self-similarity. Med Image Anal, 2012, 16(1): 18-27.
[22]  21. Coupe P, Yger P, Prima S, et al. An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans Med Imaging, 2008, 27(4): 425-441.
[23]  23. Buades A, Coll B, Morel J M. Nonlocal image and movie denoising. Int J Comput Vis, 2008, 76(2): 123-139.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133