All Title Author
Keywords Abstract

-  2018 

Development of double-component rapid curing bioadhesive

DOI: 10.7507/1001-5515.201805045

Keywords: 贻贝足丝蛋白,透明质酸,黏附蛋白,层层组装,快速固化
mussel foot protein
,hyaluronic acid,adhesive protein,layer-by-layer assembly,rapid solidification

Full-Text   Cite this paper   Add to My Lib


贻贝足丝蛋白(MFp)是一类能够在水下迅速固化,并能黏附在不同基材表面的特殊蛋白质,作为蛋白类生物黏合剂具有广泛的应用前景。本文在大肠杆菌中高效可溶性地表达了贻贝足丝融合蛋白 Sumo-Fp3(SFp3),并通过蘑菇酪氨酸酶在柱催化,将其中约 5% 的酪氨酸残基转化为 DOPA。在含 DOPA 的 SFp3(DSFp3)中加入分子量为 1 500 kD 的透明质酸后,形成的双组分生物胶水在牛皮表面的黏附力超过氰基丙烯酸盐组织粘合剂Dermabond?的两倍,并在 5 min 内达到最大黏附强度的 52% 。通过生物膜层干涉技术和扫描电子显微镜,观测到透明质酸与 DSFp3 存在静电层层组装行为,并形成紧密片层结构。本研究为蛋白质类生物胶水黏附强度低、固化慢提供了一种解决方法和理论基础。
Mussel foot proteins (MFp) could cure rapidly under water and adhere to different substrates. It has broad application prospects as an biocompatible bioglue. The soluble recombinant SUMO-MFp fusion protein (SFp3) was efficiently expressed inE.coli, and about 5% of tyrosine of SFp3 were converted into DOPA by using mushroom tyrosinase. The adhesion strength of the mixture of DOPA-containing SFp3 (DSFp3) and hyaluronic acid (MW = 1 500 kD) was more than twice that of the cyanoacrylate-based tissue adhesives, Dermabond?, and it reached 52% of its maximal strength within 5 minutes on cowhide. A layer-by-layer assembly of hyaluronic acid with DSFp3 was observed to form compact sheet structures through biofilm interferometry assay and scanning electron microscopy. This work provides a solution and theoretical basis for the low adhesion strength and slow curing of protein-based bioglue.


[1]  1. Behrns K E. Tissue adhesives in clinical medicine. J Gastrointest Surg, 2006, 10(8): 1185.
[2]  2. Bouten P J, Zonjee M, Bender J, et al. The chemistry of tissue adhesive materials. Prog Polym Sci, 2014, 39(7): 1375-1405.
[3]  3. Quinn J, Wells G, Sutcliffe T, et al. A randomized trial comparing octylcyanoacrylate tissue adhesive and sutures in the management of lacerations. J Am Med Assoc, 1997, 277(19): 1527-1530.
[4]  4. Quinn J, Maw J, Ramotar K, et al. Octylcyanoacrylate tissue adhesive versus suture wound repair in a contaminated wound model. Surgery, 1997, 122(1): 69-72.
[5]  5. Dragu A, Unglaub F, Schwarz S, et al. Foreign body reaction after usage of tissue adhesives for skin closure: a case report and review of the literature. Arch Orthop Trauma Surg, 2009, 129(2): 167-169.
[6]  6. Bhatia S K. Traumatic Injuries. New York: Springer, 2010.
[7]  7. Lee M G, Jones D. Applications of fibrin sealant in surgery. Surg Innov, 2005, 12(3): 203-213.
[8]  8. 樊廷俊, 汪小锋. 贻贝足腺细胞的超强度粘液. 生命的化学, 2001, 21(4): 331-332.
[9]  10. Zhao Hua, Waite J H. Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. J Biol Chem, 2006, 281(36): 26150-26158.
[10]  11. Lim S, Choi Y S, Kang D G, et al. The adhesive properties of coacervated recombinant hybrid mussel adhesive proteins. Biomaterials, 2010, 31(13): 3715-3722.
[11]  12. Selyanin M A, Boykov P Y, Khabarov V N, et al. Hyaluronic acid: preparation, properties, application in biology and medicine. New Jersey: John Wiley & Sons, 2015.
[12]  13. Yang B, Kang D G, Seo J H, et al. A comparative study on the bulk adhesive strength of the recombinant mussel adhesive protein fp-3. Biofouling, 2013, 29(5): 483-490.
[13]  14. Hwang D S, Gim Y, Cha H J. Expression of functional recombinant mussel adhesive protein type 3A in Escherichia coli. Biotechnol Prog, 2005, 21(3): 965-970.
[14]  15. 李楠楠, 谭亮, 王智平, 等. 厚壳贻贝足丝黏附蛋白mfp-3重组表达及黏附功能分析. 中国生物化学与分子生物学报, 2011, 27(9): 851-857.
[15]  16. Gim Y, Hwang D S, Lim S, et al. Production of fusion mussel adhesive fp-353 in Escherichia coli. Biotechnol Prog, 2008, 24(6): 1272-1277.
[16]  17. 沈家骢. 超分子层状结构: 组装与功能. 北京: 科学出版社, 2005.
[17]  9. Ninan L, Stroshine R L, Wilker J J, et al. Adhesive strength and curing rate of marine mussel protein extracts on porcine small intestinal submucosa. Acta Biomater, 2007, 3(5): 687-694.


comments powered by Disqus

Contact Us


微信:OALib Journal