全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于 mean-shift 聚类的高鲁棒性白细胞五分类识别算法

DOI: doi:10.7507/1001-5515.201609067

Keywords: 白细胞纹理, 白细胞分类, mean-shift, 高鲁棒性

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出了一种新型的基于 mean-shift 聚类算法的人体外周血中白细胞五分类算法,其核心思想是用一种近似人眼的可视化模式对白细胞纹理进行提取。首先利用 mean-shift 聚类算法从白细胞灰度图像中提取一些模式点,然后用其作为区域生长算法的种子点进行区域生长,得到一系列能够在某种程度上可视化地反映纹理的区域块。最后从这些区域块中提取一组参数向量作为白细胞的纹理特征。综合该向量和白细胞形态学特征,用人工神经网络(ANN)成功地完成了对白细胞的五分类识别。用了 1 310 个白细胞图像进行测试,得到中性粒细胞、嗜酸性粒细胞、嗜碱性粒细胞、淋巴细胞、单核细胞的正确识别率分别为 95.4%、93.8%、100%、93.1%、92.4%,证明了该算法的可行性和鲁棒性

References

[1]  1. Sabino D M U, Costa L D F, Rizzatti E G, et al. A texture approach to leukocyte recognition. Real-Time Imaging, 2004, 10(4): 205-216.
[2]  2. Neugebauer U, Clement J H, Bocklitz T, et al. Identification and differentiation of single cells from peripheral blood by Raman spectroscopic imaging. J Biophotonics, 2010, 3(8/9): 579-587.
[3]  3. 张时民. 五分类法血细胞分析仪测定原理和散点图特征. 中国医疗器械信息, 2008, 14(12): 1-9, 44.
[4]  4. Scotti F. Robust segmentation and measurements techniques of white cells in blood microscope images// 2006 IEEE Instrumentation and Measurement Technology Conference (IMTC). Sorrento, Italy: IEEE, 2006: 43-48.
[5]  5. Mohammed E A, Mohamed M M A, Far B H, et al. Peripheral blood smear image analysis: A comprehensive review. J Pathol Inform, 2014, 5(1): 9.
[6]  6. Pavlova P E, Cyrrilov K P, Moumdjiev I N. Application of HSV colour system in identification by colour of biological objects on the basis of microscopic images. Comput Med Imaging Graph, 1997, 20(5): 357-364.
[7]  7. Pan Chen, Park D S, Yoon S, et al. Leukocyte image segmentation using simulated visual attention. Expert Syst Appl, 2012, 39(8): 7479-7494.
[8]  8. Ko B C, Gim J W, Nam J Y. Automatic white blood cell segmentation using stepwise merging rules and gradient vector flow snake. Micron, 2011, 42(7): 695-705.
[9]  9. Mohammed E A, Far B H, Naugler C, et al. Application of support vector machine and k-means clustering algorithms for robust chronic lymphocytic leukemia color cell segmentation// 2013 IEEE International Conference on E-Health Networking, Applications and Services. Lisbon, Portugal: IEEE, 2013: 622-626.
[10]  10. Piuri V, Scotti F. Morphological classification of blood leucocytes by microscope images// 2004 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA). Boston, USA: IEEE, 2004: 103-108.
[11]  11. Huang D C, Hung K D, Chan Y K. A computer assisted method for leukocyte nucleus segmentation and recognition in blood smear images. J Syst Software, 2012, 85(9): 2104-2118.
[12]  12. Hiremath P S, Bannigidad P, Geeta S. Automated identification and classification of white blood cells (leukocytes) in digital microscopic images. Int J Comput Appl, 2010, 37(2): 59-63.
[13]  13. Habibzadeh M, Krzy?ak A, Fevens T. White blood cell differential counts using convolutional neural networks for low resolution images// 2013 International Conference on Artificial Intelligence and Soft Computing (ICAISC). Zakopane, Poland: Springer Berlin Heidelberg, 2013: 263-274.
[14]  14. Lina, Chris A, Mulyawan B. Focused color intersection for leukocyte detection and recognition system. International Journal of Information and Electronics Engineering, 2013, 3(5): 498-501.
[15]  15. Fatichah C, Tangel M L, Widyanto M R, et al. Parameter optimization of local fuzzy patterns based on fuzzy contrast measure for white blood cell texture feature extraction. Journal of Advanced Computational Intelligence & Intelligent Informatics, 2012, 16(3): 412-419.
[16]  16. Haralick R M. Statistical and structural approaches to texture. Proceedings of the IEEE, 1979, 67(5): 786-804.
[17]  17. Ojala T, Pietik?inen M, M?enp?? T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell, 2002, 24(7): 971-987.
[18]  18. Habibzadeh M, Krzy?ak A, Fevens T. Analysis of white blood cell differential counts using dual-tree complex wavelet transform and support vector machine classifier// 2012 International Conference on Computer Vision and Graphics (ICCVG). Warsaw, Poland: Springer Berlin Heidelberg, 2012: 414-422.
[19]  19. Rezatofighi S H, Khaksari K, Soltanian-Zadeh H. Automatic recognition of five types of white blood cells in peripheral blood// 2010 International Conference on Image Analysis and Recognition (ICIAR). Póvoa de Varzim, Portugal: Springer Berlin Heidelberg, 2010: 161-172.
[20]  20. Comaniciu D, Meer P. Mean shift: A robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell, 2002, 24(5): 603-619.
[21]  21. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern, 1979, 9(1): 62-66.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133