All Title Author
Keywords Abstract

-  2017 

新型三阶TVD限制器性能分析
Performance analysis of a new-type third-order TVD limiter

DOI: 10.13700/j.bh.1001-5965.2016.0266

Keywords: 限制器,计算流体力学(CFD),激波,双锥绕流,气动热
limiter
,computational fluid dynamics (CFD),shocks,double-cone disturbance flow,aerothermodynamic

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 在计算流体力学(CFD)方法中,限制技术是影响计算精度和计算稳定性的重要因素,目前应用较广的经典二阶总变差衰减(TVD)限制器虽能较好地满足计算要求,但性能差异大且分辨率和耗散的性能间并未得到良好权衡。对一种新型的三阶TVD插值限制器(T-3限制器)进行了研究并将其与3种经典限制器进行对比。首先通过一维黎曼问题,得出T-3限制器兼顾较高间断分辨率和良好稳定性的特点;接着通过高超声速双锥绕流和X-33外形飞行器的数值实验,得到T-3限制器具有刻画复杂流动的能力以及较优的气动热计算性能。
Abstract:For numerical scheme in computational fluid dynamics (CFD), limiter technology is an important factor affecting computational accuracy and stability. Although the present classical second-order total variation diminishing (TVD) limiters with a wide application can well satisfy the computing requirements, its performance not only largely differs but also cannot be properly weighted between resolution and dissipation. Therefore, a new third-order TVD interpolation limiter (T-3 limiter) has been studied and compared with three classical limiters. First, through one-dimensional Riemann problem, it has been found that T-3 limiter is simultaneously characterized by both high intermittent resolution and excellent stability; then, by numerical simulation of hypersonic flow over a double-cone body and X-33 configuration, it has been found that T-3 limiter boasts the capability of portraying complex flow and good aerothermodynamic calculation performance.

References

[1]  LEER B V.Towards the ultimate conservative difference scheme V:A second-order sequal to Godunov's method[J].Journal of Computational Physics,1979,32(1):101-136.
[2]  HARTEN A,ENGQUIST B,OSHER S,et al.Unifomrly high-order accurate essentially non-oscillatory schemes[J].Journal of Computational Physics,1987,71(2):231-303.
[3]  LIU X D,OSHER S,TONY C.Weighted essentially non-oscillatory schemes[J].Journal of Computational Physics,1994,115(1):200-212.
[4]  SWEBY P K.High resolution schemes using flux limiters for hyperbolic conservational laws[J].SIAM Journal of Numerical Analysis,1984,21(5):995-1011.
[5]  VENKATAKRISHMAN V.Convergence to steady state solutions of the Euler equations on unstructured grids with limiters[J].Journal of Computational Physics,1995,118(1):120-130.
[6]  屈峰,阎超,于剑,等.高精度激波捕捉格式的性能分析[J].北京航空航天大学学报,2014,40(8):1085-1089.QU F,YAN C,YU J,et al.Assessment of shock capturing methods for numerical simulations of compressible turbulence with shock waves[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(8):1085-1089(in Chinese).
[7]  YEE H C,KLOPFER G H,MINTAGNE J L.High resolution shock capturing schemes for inviscid and viscous hypersonic flows[J].Journal Computational Physics,1990,83(1):31-61.
[8]  SPEKREIJSE S.Multigrid solution of monotone second order discretization of hypersonic conservation laws[J].Mathematics of Computational,1987,49(179):135-155.
[9]  WRIGHT M J,SINHA K,OLEJNICZAK J,et al.Numerical and experimental investigation of double-cone shock interactions[J].AIAA Journal,2000,38(12):2268-2276.
[10]  孙迪,阎超,于剑,等.高精度多维限制器的性能分析[J].北京航空航天大学学报,2015,41(3):437-442.SUN D,YAN C,YU J,et al.Performance analysis of high accurate multi-dimensional limiting process[J].Journal of Beijing University of Aeronautics and Astronautics,2015,41(3):437-442(in Chinese).
[11]  BRIAN R H,THOMAS J H,SCOTT A B,et al.X-33 computational aeroheating predictions and comparisons with experimental data[J].Journal of Spacecraft and Rockets,1999,38(5):658-669.
[12]  HARTEN A.High resolution schemes for hyperbolic conservation laws[J].Journal of Computational Physics,1983,49(3):357-393.
[13]  YOON S H,KIM K H,KIM C.Multi-dimensional limiting process for the three-dimensional flow physics analyses[J].Journal of Computational Physics,2008,227(12):6001-6043.
[14]  KIM K H,KIM C.Accurate,efficient and monotonic numetical methods for multi-dimensional compressible flows,Part Ⅱ:Multi-dimensional limiting process[J].Journal of Computational Physics,2005,208(2):570-615.
[15]  阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006:123-127.YAN C.Computational fluid dynamic's methods and applications[M].Beijing:Beihang University Press,2006:123-127(in Chinese).
[16]  BERRY S A,HORVATH T J,HOLLIS B R,et al.X-33 hypersonic boundary-layer transition[J].Journal of Spacecraft and Rockets,2001,38(5):646-657.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal