User influence on multiple-input multiple-output (MIMO) performance is studied for different dual antenna handsets specially designed to have good and bad MIMO performance. The study reveals that user influence can cause either improvement or degradation for different test objects, including a spread effect over the parameters. Differences in performance between good and bad handsets can be clear when they are measured without user influence, but become small under real person influence. This result illustrates the particular importance of user influence to characterize MIMO handsets. 1. Introduction User influence on multiple antenna device performance has been a topic for research in the last few years, since it is well known that a user in the vicinity of a wireless device affects the propagation conditions that the device is experiencing. This effect is well known for single-input single-output (SISO) communications, consisting of a degradation of radiation performance due to the losses introduced by the user. This effect is usually quantified by the changes in radiation efficiency and absorbed power [1]. In spite of this knowledge, it is still not clear what the consequences are when it comes to multiple antenna devices, since they base their enhanced capabilities on a rich field distribution in terms of signal paths. Numerous studies have been performed over the last years, agreeing to the fact that the effect of the human body is more complex in MIMO terminals than in traditional ones [1–5]. The presence of the user has been demonstrated to have immediate influence on radiation patterns, input impedances and therefore on the correlation matrix, yet the effects are not fully understood and contradictory findings are commonplace. In [3], the envelope correlation coefficients were significant when the user was present. These changes showed a more important dependence to antenna orientation in [1]. In contrast, an increment of the correlation coefficients is also available in the literature [6]. Contradictory findings can also be found for the effects on diversity gain [7]. In this paper, the performance of different handsets has been analyzed. All the handsets used within this study consist of two antennas, in order to implement diversity at the receiving terminal end of the link (SIMO: Single Input Multiple Output). This SIMO configuration is relevant for this study since it is one of the normal over-the-air (OTA) test cases for the new communication standards (HSDPA and LTE). 2. Measurements 2.1. Test Objects Four different handsets are used for
References
[1]
G. F. Pedersen and S. Skjaerris, “Influence on antenna diversity for a handheld phone by the presence of a person,” in Proceedings of the 47th IEEE Vehicular Technology Conference, pp. 1768–1772, May 1997.
[2]
T. Zervos, A. Alexandridis, K. Peppas et al., “The influence of MIMO terminal user's hand on channel capacity,” in Proceedings of the 1st European Conference on Antennas and Propagation (EuCAP '06), Nice, France, November 2006.
[3]
K. Meksamoot, M. Krairiksh, and J. I. Takada, “A polarization diversity PIFA on portable telephone and the human body effects on its performance,” Proceedings of the IEICE Transactions on Communications, vol. E84-B, no. 9, pp. 2460–2467, 2001.
[4]
D. C. Kemp and Y. Huang, “Antenna diversity and user interaction at 1800 MHz,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium, vol. 3, pp. 479–482, July 2005.
[5]
B. M. Green and M. A. Jensen, “Diversity performance of dual-antenna handsets near operator tissue,” IEEE Transactions on Antennas and Propagation, vol. 48, no. 7, pp. 1017–1024, 2000.
[6]
J. F. Valenzuela-Valdês, A. M. Martínez-González, and D. Sánchez-Hernández, “Effect of user presence on receive diversity and MIMO capacity for Rayleigh-Fading channels,” IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 596–599, 2007.
[7]
V. Plicanic, B. K. Lau, A. Derneryd, and Z. Ying, “Actual diversity performance of a multiband diversity antenna with hand and head effects,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 5, pp. 1547–1556, 2009.
[8]
M. Kang and M. S. Alouini, “Impact of correlation on the capacity of MIMO channels,” in Proceedings of the International Conference on Communications (ICC '03), pp. 2623–2627, May 2003.
[9]
D. A. Hill and J. M. Ladbury, “Spatial-correlation functions of fields and energy density in a reverberation chamber,” IEEE Transactions on Electromagnetic Compatibility, vol. 44, no. 1, pp. 95–101, 2002.
[10]
R. G. Vaughan and J. B. Andersen, “Antenna diversity in mobile communications,” in Proceedings of the IEEE Transactions on Vehicular Technology, vol. VT-36, pp. 147–172, November 1987.
[11]
D. G. Brennan, “Linear diversity combining techniques,” in Proceedings of the IRE, vol. 47, pp. 1075–1102, June 1959.
[12]
D. G. Brennan, “Linear diversity combining techniques,” in Proceedings of the IEEE, vol. 91, no. 2, pp. 331–356, February 2003.
[13]
P. S. Kildal and K. Rosengren, “Electromagnetic analysis of effective and apparent diversity gain of two parallel dipoles,” IEEE Antennas and Wireless Propagation Letters, vol. 2, pp. 9–13, 2003.
[14]
J. F. Valenzuela-Valdés, M. A. García-Fernández, A. M. Martínez-González, and D. Sánchez-Hernández, “The role of polarization diversity for MIMO systems under Rayleigh-fading environments,” IEEE Antennas and Wireless Propagation Letters, vol. 5, no. 1, pp. 534–536, 2006.