All Title Author
Keywords Abstract

-  2018 

烤烟烘烤中细菌群落结构的多样性分析
Diversity Analysis of Bacterial Community Structure in the Curing Process of Flue-Cured Tobacco

DOI: 10.13718/j.cnki.xdzk.2018.06.003

Keywords: 烤烟, 细菌, 烘烤, 群落结构
flue-cured tobacco
, bacteria, flue-cure, community structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究烤烟烘烤过程中细菌群落结构的多样性,以云烟87为材料,采用Miseq高通量测序技术,分析了不同烤房烘烤过程中细菌群落的结构及其变化.结果表明,A,B,C 3个烤房的OTU(Operational Taxonomic Units)大部分都是共有,B烤房独有OTU较少,C烤房独有OTU较多.通过分析各样本中细菌群落组成的相似性和差异性发现,芽孢杆菌(Bacillus)为3个烤房的优势菌群.部分细菌在烘烤前后期物种群落结构差异较大,如马赛菌属(Massilia)、根瘤菌属(Rhizobium)、寡养单胞菌属(Stenotrophomonas)、鞘氨醇单胞菌属(Sphingomonas)等.进一步主成分分析显示,烘烤前期和后期样本有比较明显的不同,细菌组成差异较大.该结果为进一步针对性地利用这些优势细菌以提高烘烤烟叶质量奠定了基础.
In order to study the diversity of bacterial community structure in the curing process of flue-cured tobacco, Miseq high-throughput sequencing was performed on the tobacco variety Yunyan 87. The results showed that most of the OUT (operational taxonomic units) in flue-curing rooms A, B and C shared similar characteristics. Of the three flue-curing rooms, flue-curing room B had the fewest unique OTU, while flue-curing room C had the most. Analysis of the similarities and differences among the bacterial population in various samples revealed that Bacillus was the dominant bacteria in flue-curing rooms A, B and C. Some bacteria, such as Marseille sp., Rhizobium, Stenotrophomonas and Sphingomonas, showed considerable differences in their community structure during the early and the late curing stages. Principal component analysis showed that the bacterial composition of the samples in the early and the late stages was obviously different. The above results have laid a foundation for improving the quality of flue cured tobacco leaves with these dominant bacteria

References

[1]  白洋, 钱景美, 周俭民, 等. 农作物微生物组:跨越转化临界点的现代生物技术[J]. 中国科学院院刊, 2017, 32(3): 260-265.
[2]  厉昌坤. 自然陈化过程中烤烟叶面微生物变化及应用研究[D]. 北京: 中国农业科学院, 2008.
[3]  SANDHU A, HALVERSON L J, BEATTIE G A. Bacterial Degradation of Airborne Phenol in the Phyllosphere[J]. Environmental Microbiology, 2007, 9(2): 383-392. DOI:10.1111/emi.2007.9.issue-2
[4]  江春玉. 植物促生细菌提高植物对铅、镉的耐受性及富集效应研究[D]. 南京: 南京农业大学, 2008.
[5]  李梅云. 微生物改善烟叶品质研究进展[J]. 工业微生物, 2006, 36(3): 43-48.
[6]  宫长荣, 程龙, 宋朝鹏, 等. 烤烟烘烤过程中微生物的动态变化[J]. 中国烟草科学, 2010, 31(1): 44-46, 52.
[7]  MORIN A, PORTER A, RATAVICIUS A, et al. Evolution of Tobacco-Specific Nitrosamines and Microbial Populations During Flue-Curing of Tobacco Under Direct and Indirect Heating[J]. Beitr?ge Zur Tabakforschung, 2004, 21(1): 40-46.
[8]  RUPPEL S, MERBACH W. Effect of Ammonium and Nitrate on 15N2-Fixation of Azospirillum spp. and Pantoea Agglomerans in Association with Wheat Plants[J]. Microbiological Research, 1997, 152(4): 377-383. DOI:10.1016/S0944-5013(97)80055-9
[9]  SCHOLZ C, REMUS, R, ZLELKE, R. Development of DAS-ELISA for Some Selected Bacteria from the Rhizosphere[J]. Zbl Mikrobiol, 1991, 146: 197-207.
[10]  周芳芳, 周丽娟, 詹军, 等. 烟草功能菌的研究进展[J]. 河南农业科学, 2013, 42(12): 6-10, 15. DOI:10.3969/j.issn.1004-3268.2013.12.002
[11]  姚恒. 烘烤对烟叶微生物种群的影响[J]. 安徽农业科学, 2010, 38(29): 16166-16168. DOI:10.3969/j.issn.0517-6611.2010.29.033
[12]  张树堂, 祝明亮, 杨雪彪. 烘烤方式及烘烤条件对烤烟烘烤中细菌变化的影响[J]. 烟草科技, 2001(4): 42-43.
[13]  祝明亮. 烟草调制期间微生物研究进展[J]. 微生物学通报, 2008, 35(8): 1278-1281.
[14]  张彦东, 罗昌荣, 王辉龙, 等. 微生物降解烟碱研究应用进展[J]. 烟草科技, 2003(12): 3-7. DOI:10.3969/j.issn.1002-0861.2003.12.001
[15]  ENGLISH C F, BELL E J, BERGER A J. Isolation of Thermophiles from Broadleaf Tobacco and Effect of Pure Culture Inoculation on Cigar Aroma and Mildness[J]. Applied Microbiology, 1967, 15(1): 117-119.
[16]  LI L, SU Q, XIE B, et al. Gut Microbes in Correlation with Mood: Case Study in a Closed Experimental Human Life Support System[J]. Neurogastroenterology and Motility, 2016, 28(8): 1233-1240. DOI:10.1111/nmo.2016.28.issue-8
[17]  ZHU Ying, LV Guang-chao, CHEN Ying-long, et al. Inoculation of Arbuscular Mycorrhizal Fungi with Plastic Mulching in Rainfed Wheat: A Promising Farming Strategy[J]. Field Crops Research, 2017, 204: 229-241. DOI:10.1016/j.fcr.2016.11.005
[18]  徐淑霞, 靳赛, 吴坤, 等. 小麦表面微生物多样性研究[J]. 粮食储藏, 2004, 33(6): 41-43.
[19]  陈泽斌, 李冰, 王定康, 等. Illumina MiSeq高通量测序分析核桃内生细菌多样性[J]. 江苏农业学报, 2015, 31(5): 1129-1133.
[20]  WICHITRA L, PUNPEN H, SAMERCHAI C. Growth Inhibitory Properties of Bacillus subtilis Strains and Their Metabolites Against the Green Mold Pathogen (Penicillium digitatum Sacc.) of Citrus Fruit[J]. Postharvest Biology and Technology, 2008, 48(1): 113-121. DOI:10.1016/j.postharvbio.2007.09.024
[21]  SWAIN M R, RAY R C. Biocontrol and other Beneficial Activities of Bacillus subtilis Isolated from Cowdung Microflora[J]. Microbiological Research, 2009, 164(2): 121-130. DOI:10.1016/j.micres.2006.10.009
[22]  王嫒媛, 段玉玺, 陈立杰. 根瘤菌在植物病害生物防治中的作用[C]. 中国植物病理学会2007年学术年会论文集, 2007: 398-403.
[23]  ADHIKARI T B, JOSEPH C M, YANG G, et al. Evaluation of Bacteria Isolated from Rice for Plant Growth Promotion and Biological Control of Seedling Disease of Rice[J]. Canadian Journal of Microbiology, 2001, 47(10): 916-924. DOI:10.1139/w01-097
[24]  雷丽萍, 郭荣君, 缪作清, 等. 微生物在烟草生产中应用研究进展[J]. 中国烟草学报, 2006, 12(4): 47-51.
[25]  OMER Z S, TOMBOLINI R, GERHARDSON B. Plant Colonization by Pink-Pigmented Facultative Methylotrophic Bacteria (PPFMs)[J]. FEMS Microbiology Ecology, 2004, 47(3): 319-326. DOI:10.1016/S0168-6496(04)00003-0
[26]  WIERNIK A, CHRISTAKOPOULOS A, JOHANSSON L, et al. Effect of Air-Curing on the Chemical Composition of Tobacco[J]. Recent Advances in Tobacco Science, 1995(21): 39-80.
[27]  FERNANDO W G D, NAKKEERAN S, ZHANG Y, et al. Biological Control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on Canola Petals[J]. Crop Protection, 2007, 26(2): 100-107. DOI:10.1016/j.cropro.2006.04.007
[28]  SMITH R A, COUCHE G A. The Phylloplane as a Source of Bacillus thuringiensis Variants[J]. Applied and Environmental Microbiology, 1991, 57(1): 311-315.
[29]  GEISS V L, GREGORY C F, NEWTON R P, et al. Process for Reduction of Nicotine Content of Tobacca by Microbial Treatment: 4140136 [P]. United States Patent, 1979.
[30]  王昀璐, 花日茂, 唐欣昀. 寡养单胞菌在环境保护中的应用研究进展[J]. 安徽农业科学, 2010, 38(28): 15796-15797, 15800. DOI:10.3969/j.issn.0517-6611.2010.28.135
[31]  潘建刚, 呼庆, 齐鸿雁, 等. 叶际微生物研究进展[J]. 生态学报, 2011, 31(2): 583-592.
[32]  RUPPEL S, HECHT-BUCHHOLZ C, REMUS R, et al. Settlement of the Diazotrophic, Phytoeffective Bacterial Strain Pantoea Agglomerans on and Within Winter Wheat: An Investigation Using ELISA and Transmission Electron Microscopy[J]. Plant and Soil, 1992, 145(2): 261-273. DOI:10.1007/BF00010355
[33]  刘建军. 微生物肥料对烟叶品质的影响[J]. 重庆与世界, 2016(11): 32-34, 51.
[34]  WANG Yao-yue, CAO Ping-hua, WANG Lei, et al. Bacterial Community Diversity Associated with Different Levels of Dietary Nutrition in the Rumen of Sheep[J]. Applied Microbiology and Biotechnology, 2017, 101(9): 3717-3728. DOI:10.1007/s00253-017-8144-5
[35]  胡杰, 何晓红, 李大平, 等. 鞘氨醇单胞菌研究进展[J]. 应用与环境生物学报, 2007, 13(3): 431-437.
[36]  TAKEUCHI M, SAKANE T, YANAGI M, et al. Taxonomic Study of Bacteria Isolated from Plants: Proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., and Sphingomonas mali sp. nov[J]. Int J Syst Bacteriol, 1995, 45(2): 334-341. DOI:10.1099/00207713-45-2-334
[37]  CAI Zhi-qiang, MA Jiang-tao, WANG Jing, et al. Impact of the Novel Neonicotinoid Insecticide Paichongding on Bacterial Communities in Yellow Loam and Huangshi Soils[J]. Environmental Science and Pollution Research, 2016, 23(6): 5134-5142. DOI:10.1007/s11356-015-5733-7

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal