全部 标题 作者
关键词 摘要


Responses of Metabolites in Soybean Shoot Apices to Changing Atmospheric Carbon Dioxide Concentrations

DOI: 10.1155/2012/309153

Full-Text   Cite this paper   Add to My Lib

Abstract:

Soybean seedlings were grown in controlled environment chambers with CO2 partial pressures of 38 (ambient) and 72 (elevated) Pa. Five or six shoot apices were harvested from individual 21- to 24-day-old plants. Metabolites were analyzed by gas chromatography and, out of 21 compounds, only sucrose and fructose increased in response to CO2 enrichment. One unidentified metabolite, Unk-21.03 decreased up to 80% in soybean apices in response to elevated CO2. Levels of Unk-21.03 decreased progressively when atmospheric CO2 partial pressures were increased from 26 to 100?Pa. Reciprocal transfer experiments showed that Unk-21.03, and sucrose in soybean apices were altered slowly over several days to changes in atmospheric CO2 partial pressures. The mass spectrum of Unk-21.03 indicated that this compound likely contained both an amino and carboxyl group and was structurally related to serine and aspartate. Our findings suggested that CO2 enrichment altered a small number of specific metabolites in soybean apices. This could be an important step in understanding how plant growth and development are affected by carbon dioxide enrichment. 1. Introduction Atmospheric CO2 partial pressures are increasing due to human activities that include industrialization, fossil fuel combustion, and deforestation [1]. Since CO2 is an important substrate for photosynthesis, elevated atmospheric CO2 has the potential to alter the productivity of terrestrial plants and that of natural or managed ecosystems [2]. Single leaf gas exchange rates of higher plants were affected by CO2 enrichment, and this often resulted in larger plants with increased reproductive capacity [3–5]. Due to accelerated rates of net CO2 assimilation, concentrations of various leaf components including starch, soluble carbohydrates, amines, organic acids, pigments, and important photosynthetic proteins were affected by plant growth in CO2-enriched atmospheres [6–8]. Increased biomass accumulation in response to CO2 enrichment impacted the demand for soil nutrients, and in some cases this resulted in nutritionally limited growth conditions [9]. Nutrient limitations under CO2 enrichment also decreased leaf photosynthetic capacity and further altered leaf constituents [8]. In comparison to source leaves, much less attention has been given to the effects of elevated CO2 on the growth and development of sinks. Sink organs are dependent upon source leaves for assimilates to provide the carbon, nitrogen, and energy needed for growth and development. In general, metabolite levels in sink tissues were altered in concert

References

[1]  R. A. Houghton, “Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000,” Tellus B, vol. 55, no. 2, pp. 378–390, 2003.
[2]  G. Bowes, “Facing the inevitable: plants and increasing atmospheric CO2,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 44, no. 1, pp. 309–332, 1993.
[3]  B. A. Kimball, J. R. Mauney, F. S. Nakayama, and S. B. Idso, “Effects of increasing atmospheric CO2 on vegetation,” Vegetatio, vol. 104-105, no. 1, pp. 65–75, 1993.
[4]  L. H. Ziska, J. A. Bunce, and F. Caulfield, “Intraspecific variation in seed yield of soybean (Glycine max) in response to increased atmospheric carbon dioxide,” Australian Journal of Plant Physiology, vol. 25, no. 7, pp. 801–807, 1998.
[5]  E. A. Ainsworth, P. A. Davey, C. J. Bernacchi et al., “A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield,” Global Change Biology, vol. 8, no. 8, pp. 695–709, 2002.
[6]  G. Y. Nie, S. P. Long, R. L. Garcia et al., “Effects of free-air CO2 enrichment on the development of the photosynthetic apparatus in wheat, as indicated by changes in leaf proteins,” Plant, Cell & Environment, vol. 18, no. 8, pp. 855–864, 1995.
[7]  R. C. Sicher and J. A. Bunce, “Relationship of photosynthetic acclimation to changes of Rubisco activity in field-grown winter wheat and barley during growth in elevated carbon dioxide,” Photosynthesis Research, vol. 52, no. 1, pp. 27–38, 1997.
[8]  M. Geiger, V. Haake, F. Ludewig, U. Sonnewald, and M. Stitt, “The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco,” Plant, Cell & Environment, vol. 22, no. 10, pp. 1177–1199, 1999.
[9]  W. J. Arp, “Effects of source-sink relations on photosynthetic acclimation to elevated CO2,” Plant, Cell & Environment, vol. 14, no. 8, pp. 869–875, 1991.
[10]  R. C. Sicher, “Interactive effects of inorganic phosphate nutrition and carbon dioxide enrichment on assimilate partitioning in barley roots,” Physiologia Plantarum, vol. 123, no. 2, pp. 219–226, 2005.
[11]  J. M. G. Thomas, K. J. Boote, L. H. Allen Jr., M. Gallo-Meagher, and J. M. Davis, “Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance,” Crop Science, vol. 43, no. 4, pp. 1548–1557, 2003.
[12]  R. Sicher, J. Bunce, and B. Matthews, “Differing responses to carbon dioxide enrichment by a dwarf and a normal-sized soybean cultivar may depend on sink capacity,” Canadian Journal of Plant Science, vol. 90, no. 3, pp. 257–264, 2010.
[13]  L. H. Ziska, R. Palowsky, and D. R. Reed, “A quantitative and qualitative assessment of mung bean (Vigna mungo (L.) Wilczek) seed in response to elevated atmospheric carbon dioxide: potential changes in fatty acid composition,” Journal of the Science of Food and Agriculture, vol. 87, no. 5, pp. 920–923, 2007.
[14]  S. Y. Wang, J. A. Bunce, and J. L. Maas, “Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries,” Journal of Agricultural and Food Chemistry, vol. 51, no. 15, pp. 4315–4320, 2003.
[15]  E. A. Kinsman, C. Lewis, M. S. Davies et al., “Elevated Co2 stimulates cells to divide in grass meristems: a differential effect in two natural populations of Dactylis glomerata,” Plant, Cell & Environment, vol. 20, no. 10, pp. 1309–1316, 1997.
[16]  R. C. Sicher, “Daily changes of amino acids in soybean leaflets are modified by CO2 enrichment,” International Journal of Plant Biology, vol. 1, no. 18, pp. 89–893, 2010.
[17]  U. Roessner, C. Wagner, J. Kopka, R. N. Trethewey, and L. Willmitzer, “Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry,” Plant Journal, vol. 23, no. 1, pp. 131–142, 2000.
[18]  M. Stitt, “Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells,” Plant, Cell & Environment, vol. 14, no. 8, pp. 741–762, 1991.
[19]  R. Zrenner, K. Schüler, and U. Sonnewald, “Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers,” Planta, vol. 198, no. 2, pp. 246–252, 1996.

Full-Text

comments powered by Disqus