All Title Author
Keywords Abstract

-  2018 

聚多巴胺功能化修饰植入材料的研究进展
Research Progress on the Modification of Implant Materials by Polydopamine

DOI: 10.13701/j.cnki.kqyxyj.2018.07.005

Keywords: 聚多巴胺,植入材料,功能化修饰,
Polydopamine
,Implant,Functional modification

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 鉴于现阶段植入材料在临床应用中出现的诸多问题,科研工作者利用聚多巴胺二次反应平台对植入材料进行功能化修饰来弥补其不足之处,本文就近年来聚多巴胺在功能化修饰口腔及骨科植入材料、支架植入材料方面的研究进展作一综述

References

[1]  Krogsgaard M, Nue V. Mussel-inspired materials: self-healing through coordination chemistry [J]. Chemistry, 2016, 22(3):844-857
[2]  Jia ZJ, Xiu P, Li M, et al. Bioinspired anchoring AgNPs onto micro-nanoporous TiO<sub>2</sub> orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblas functions and host responses [J]. Biomaterials, 2016, 75:203-222
[3]  Oosterbos CJ, Vogely HCh, Nijhof MW. Osseointegration of hydroxyapatite-coated and noncoated Ti6Al4V implants in the presence of local infection: A comparative histomorphometrical study in rabbits [J]. J Biomed Mater Res, 2002, 60(3):339-347
[4]  Li M, Liu Q, Jia ZJ, et al. Polydopamine-induced nanocomposite Ag/CaP coatings on the surface of titania nanotubes for antibacterial and osteointegration functions [J]. J Mater Chem B, 2015, 3(45):8796-8805
[5]  Tan YL, Leonhard M, Moser D. Antibiofilm activity of carboxymethyl chitosan on the biofilms of non-Candida albicans Candida species [J]. Carbohyd Polym, 2016, 149:77-82
[6]  Lee H, Dellatore SM, Miller WM. Mussel-inspired surface chemistry for multifunctional coatings [J]. Science, 2007, 318(5849):426-430
[7]  Zheng D, Neoh KG, Kang ET. Bifunctional coating based on carboxymethyl chitosan with stable conjugated alkaline phosphatase for inhibiting bacterial adhesion and promoting osteogenic differentiation on titanium [J]. Appl Surf Sci, 2016, 360(A):86-97
[8]  Taskin MB, Xu RD, Gregersen H. Three-dimensional polydopamine functionalized coiled microfibrous scaffolds enhance human mesenchymal stem cells colonization and mild myofibroblastic differentiation [J]. Acs Appl Mater Inter, 2016, 8(25):15864-15873
[9]  刘崇光,屈树新,翁杰.聚多巴胺在生物材料改性中的应用[J].化学进展, 2015,27(2):212-219
[10]  Wang Z, Dong CF, Yang SF. Facile incorporation of hydroxyapatite onto an anodized Ti surface via a mussel inspired polydopamine coating [J]. Appl Surf Sci, 2016, 378:496-503
[11]  Zheng D, Neoh KG, Shi ZL, et al. Assessment of stability of surface anchors for antibacterial coatings and immobilized growth factors on titanium [J]. J Colloid Interf Sci, 2013, 406(18):238-246
[12]  Chen QZ. Metallic implant biomaterials [J]. Mat Sci Eng R, 2015, 87:1-57
[13]  Peng T, Xu D. Mussel-inspired functionalization of PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy [J]. Colloid Surface B, 2016, 141:327-337
[14]  Hou P, Zhao CL, Cheng PF, er al. Reduced antibacterial property of metallic magnesium <i>in vivo</i> [J]. Biomed Mater, 2017, 12(1):015010
[15]  Chen YQ, Zhao S, Chen MY. Sandwiched polydopamine (PDA) layer for titanium dioxide (TiO<sub>2</sub>) coating on magnesium to enhance corrosion protection [J]. Corros Sci, 2015, 96:67-73
[16]  Wei ZL. Hemocompatibility and selective cell fate of polydopamine-assisted heparinized PEO/PLLA composite coating on biodegradable AZ31 alloy [J]. Colloid Surface B, 2014, 121(1):451-460
[17]  Liu XL, Zhen Z, Liu J, et al. Multifunctional MgF2/polydopamine coating on Mg alloy for vascular stent application [J]. J Mater Sci Technol, 2015, 31(7):733-743
[18]  Zhang XD, Yi JH, Zhao GW, et al. Layer-by-layer assembly of silver nanoparticles embedded polyelectrolyte multilayer on magnesium alloy with enhanced antibacterial property [J]. Surf Coat Tech, 2016, 286:103-112
[19]  Xu AX, Zhou LW, Deng Y, et al. A carboxymethyl chitosan and peptide-Decorated polyetheretherketone ternary biocomposite with enhanced antibacterial activity and osseointegration as orthopedic/dental implants [J]. J Mater Chem B, 2016, 4(10):1878-1890
[20]  Sigwart U, Peul J, Mirkovitch V, et al.Intravascular stents to prevent occlusion and re-stenosis after transluminal angioplasty [J]. New Engl J Med, 1987, 316(12):701-706
[21]  Zhao YC, Tu QF, Wang J, et al. Crystalline TiO<sub>2</sub> grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom-transfer radical polymerization [J]. Appl Surf Sci, 2010,257(5):1596-1601
[22]  Ma WY, Yang P, Li JG, et al. Immobilization of poly(MPC) brushes onto titanium surface by combining dopamine self-polymerization and ATRP: Preparation, characterization and evaluation of hemocompatibility <i>in vitro</i> [J]. Appl Surf Sci, 2015, 349(9):445-451
[23]  朱大年,王庭槐.生理学[M].北京:人民卫生出版社, 2013:140
[24]  Rocco KA, Maxfield MW, Best CA. <i>In vivo</i> applications of electrospun tissue-engineered vascular grafts: A review [J]. Tissue Eng Part B-Rev, 2014, 20(6):628-640
[25]  Cho HJ, Perikamana SK, Lee JH. Effective Immobilization of BMP-2 Mediated by polydopamine coating on biodegradable nanofibers for enhanced in vivo bone formation [J]. Acs Appl Mater Inter, 2014, 60(14):11225-11235
[26]  Cheng LY, Sun XM, Zhao X. Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars [J]. Biomaterials, 2016, 83:169-181

Full-Text

comments powered by Disqus