全部 标题 作者
关键词 摘要


Role of Pigeonpea Cultivation on Soil Fertility and Farming System Sustainability in Ghana

DOI: 10.1155/2012/702506

Full-Text   Cite this paper   Add to My Lib

Abstract:

The productivity of the smallholder farming system in Ghana is under threat due to soil fertility decline. Mineral fertilizer is sparingly being used by smallholder farmers because of prohibitive cost. Grain legumes such as pigeonpea can play a complementary or alternative role as a source of organic fertilizer due to its ability to enhance soil fertility. Despite its importance, the potential of pigeonpea as a soil fertility improvement crop has not been exploited to any appreciable extent and the amount of land cultivated to pigeonpea in Ghana is vey negligible. This paper synthesizes recent studies that have been carried out on pigeonpea in Ghana and discusses the role of pigeonpea cultivation in soil fertility management and its implication for farming system sustainability. The paper shows that recent field studies conducted in both the semi-deciduous forest and the forest/savanna transitional agro-ecological zones of Ghana indicate that pigeonpea/maize rotations can increase maize yield by 75–200%. Barrier to widespread adoption of pigeonpea include land tenure, market, and accessibility to early maturing and high yielding varieties. The paper concludes among other things that in order to promote the cultivation of pigeonpea in Ghana, there is the need to introduce varieties that combine early maturity with high yields and other desirable traits based on farmers preferences. 1. Introduction Agricultural productivity in the smallholder farming systems in Ghana is under threat due to declining soil fertility. In the past, smallholder farmers in Ghana relied on the extended bush fallow system for maintaining the productivity of their farmlands [1]. This system allowed restoration of phosphorus (P) and nitrogen (N), the most limiting nutrients. However, over the years, the population growth-induced scarcity of suitable farmland has led to the shortening of the fallow period making it difficult to manage soil fertility in smallholder farming systems. The problem is compounded by the increasing cost of inputs at the farm level due to structural adjustment programmes that have removed subsidies and increased supply costs due to the deterioration conditions of rural infrastructure [2]. For instance, in 2002, whereas a metric tonne of urea cost about US$90 FOB (free on board) in Europe [3], the same quantity cost a Ghanaian farmer about US$308 at the farm level [4]. Most farmers, especially the smallholder farmers, do not have access to formal credit and therefore cannot afford to buy mineral fertilizers even when it has been demonstrated to be profitable

References

[1]  P. H. Nye and D. Stephen, “Soil fertility,” in Agriculture and Landuse in Ghana, J. B. Wills, Ed., pp. 127–143, Oxford University Press, London, UK, 1962.
[2]  H. Gerner, E. O. Asante, E. Owusu Benoah, and K. Marfo, Ghana Fertilizer Privatization Scheme. Private Sector Role and Public Sector Responsibility in Meeting Needs of Farmers, IFDC-Africa, Lome, Togo, 1995.
[3]  P. A. Sanchez, “Soil fertility and hunger in Africa,” Science, vol. 295, no. 5562, pp. 2019–2020, 2002.
[4]  ISSER, The state of Ghana economy in 2004, University of Ghana, Legon, Ghana, 2005.
[5]  H. B. Obeng, K. G. Erbyn, and E. O. Asante, “Fertilizer requirements and Use in Ghana,” Consultancy Report, Tropical Agricultural Development Consultancy, Accra, Ghana.
[6]  K. E. Giller, Nitrogen Fixation in Tropical Cropping Systems, CAB International, Wallingford, UK, 2nd edition, 2001.
[7]  S. S. Snapp, R. B. Jones, E. M. Minja, J. Rusike, and S. N. Silim, “Pigeon Pea for africa: a versatile vegetable—and more,” HortScience, vol. 38, no. 6, pp. 1073–1079, 2003.
[8]  S. Adjei-Nsiah, C. Leeuwis, K. E. Giller et al., “Land tenure and differential soil fertility management practices among native and migrant farmers in Wenchi, Ghana: implications for interdisciplinary action research,” NJAS-Wageningen Journal of Life Sciences, vol. 52, no. 3-4, pp. 331–348, 2004.
[9]  S. Adjei-Nsiah, T. W. Kuyper, C. Leeuwis, M. K. Abekoe, and K. E. Giller, “Evaluating sustainable and profitable cropping sequences with cassava and four legume crops: effects on soil fertility and maize yields in the forest/savannah transitional agro-ecological zone of Ghana,” Field Crops Research, vol. 103, no. 2, pp. 87–97, 2007.
[10]  D. Hounkonnou, D. K. Kossou, T. W. Kuyper et al., “Convergence of sciences: the management of agricultural research for small-scale farmers in Benin and Ghana,” NJAS-Wageningen Journal of Life Sciences, vol. 53, no. 3-4, pp. 343–367, 2006.
[11]  P. Mapfumo, F. Matambanengwe, R. Chikowo et al., “Farmers' perceptions lead to experimentation?” LEISA Magazine, vol. 24, 2008.
[12]  S. Adjei-Nsiah, C. Leeuwis, O. Sakyi-Dawson, K. E. Giller, and T. W. Kuyper, “Exploring diversity among farmers for orienting inter-disciplinary action research on cropping system management in Wenchi, Ghana: the significance of time horizons,” International Journal of Agricultural Sustainability, vol. 5, pp. 176–194, 2007.
[13]  S. Adjei-Nsiah, “Evaluating cropping sequences with cassava and three grain legume crops: effects on soil fertility and maize yields in the semi-deciduous forest zone of Ghana,” Journal of Soil Science And Environmental Management, vol. 4, no. 1, 2012.
[14]  S. Adjei-Nsiah, Cropping systems, land tenure and social diversity in Wenchi, Ghana: implication for soil fertility management [Ph.D. thesis], Wageningen University, The Netherlands, 2006.
[15]  A. A. Yusuf, R. C. Abaidoo, E. N. O. Iwuafor, O. O. Olufajo, and N. Sanginga, “Rotation effects of grain legumes and fallow on maize yield, microbial biomass and chemical properties of an Alfisol in the Nigerian savanna,” Agriculture, Ecosystems and Environment, vol. 129, no. 1–3, pp. 325–331, 2009.
[16]  S. Recous, D. Robin, D. Darwis, and B. Mary, “Soil inorganic N availability: effect on maize residue decomposition,” Soil Biology and Biochemistry, vol. 27, no. 12, pp. 1529–1538, 1995.
[17]  W. D. Sakala, G. Cadisch, and K. E. Giller, “Interactions between residues of maize and pigeonpea and mineral N fertilizers during decomposition and N mineralization,” Soil Biology and Biochemistry, vol. 32, no. 5, pp. 679–688, 2000.
[18]  K. E. Giller and G. Cadisch, “Future benefits from biological nitrogen fixation: an ecological approach to agriculture,” Plant and Soil, vol. 174, no. 1-2, pp. 255–277, 1995.
[19]  N. Ae, J. Arihara, K. Okada, T. Yoshihara, and C. Johansen, “Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent,” Science, vol. 248, no. 4954, pp. 477–480, 1990.
[20]  P. Mapfumo, B. M. Campbell, S. Mpepereki, and P. Mafongoya, “Legumes in soil fertility management: the case of pigeonpea in smallholder farming systems of Zimbabwe?” African Crop Science Journal, vol. 9, no. 4, pp. 629–644, 2001.
[21]  C. A. Palm, K. E. Giller, P. L. Mafongoya, and M. J. Swift, “Management of organic matter in the tropics: translating theory into practice,” Nutrient Cycling in Agroecosystems, vol. 61, no. 1-2, pp. 63–75, 2001.

Full-Text

comments powered by Disqus