|
- 2016
椭圆方程约束的最优边界控制问题的非重叠型区域分解迭代方法
|
Abstract:
摘要: 研究了一类椭圆方程约束的最优边界控制问题的数值求解方法。为了避免运用传统数值方法所产生庞大的计算量,我们采用非重叠型区域分解迭代方法。 即:将求解区域Ω分解成若干个非重叠子区域,把上述的最优边界控制问题分解成这些子区域上的局部问题,这些局部问题间的内边界条件采用Robin条件。建立了求解这些局部问题的迭代格式,推导证明了迭代格式的收敛性。最后,给出一个数值算例,验证了迭代格式的有效性。
Abstract: A numerical method for solving optimal boundary control problems governed by elliptic equations is considered. In order to avoid large amounts of calculation produced by traditional numerical methods. An iterative non-overlapping domain decomposition method is established. The whole domain is divided into many non-overlapping subdomains, and the optimal boundary control problem is decomposed into local problems in these subdomains. Robin conditions are used to communicate the local problems on the interfaces between subdomains. The iterative scheme for solving these local problems is studied, and prove the convergence of the scheme is proved. Finally, a numerical example to prove the validity of the scheme is presented
[1] | LOINS J L, BENSOUSSAN A, GLOWINSKI R. Méthode de décomposition appliquée au contr?le optimal de systèmes distribués[C]. 5th IFIP Conference on Optimization Techniques, Lecture Notes in Computer Science. Berlin: Springer Verlag, 1973: 5. |
[2] | LEUGERING G. Domain decomposition of optimal control problems for dynamic networks of elastic strings[J]. Computional Optimization and Applications, 2000, 16(1):5-27. |
[3] | LIONS J L. Optimal control of systems governed by partial differential equations[M]. New York: Springer-Verlag, 1971. |
[4] | NEITTAANM(¨overA)KI P, TIBA D. Optimal control of nonlinear parabolic systmes, Theroy, Algorithms and Applications[M]. Florida: CRC Press, 1994. |
[5] | YAN Ningning, ZHOU Zhaojie. A prior and a posteriori error analysis of edge stabilization Galerkin method for the optimal control problem governed by convection-dominated diffusion equation[J]. Journal of Computational and Applied Mathematics, 2009, 223(1):198-217. |
[6] | SUN Tongjun, MA Keying. Parapllel Galerkin domain decomposition procedures for wave euqation[J]. Journal of Computational and Applied Mathematics, 2010, 233:1850-1865. |
[7] | BENAMOU J D. Domain decomposition methods with coupled transmission conditions for the optimal control of systems governed by elliptic partial differential equations[J]. SIAM Journal on Numerical Analysis, 1996, 33(6):2401-2416. |
[8] | LIU Wenbin, YAN Ningning. Adaptive finite element method for optimal control governed by PDEs[M]. Beijing: Science Press, 2008. |
[9] | GE Liang, LIU Wenbin, YANG Danping. Adaptive finite element approximation for a constrained optimal control problem via multi-meshes[J]. Journal of Scientific Computing, 2009, 41(2):238-255. |
[10] | MA Keying, SUN Tongjun. Galerkin domain decomposition procedures for parabolic equations on rectangular domain[J]. International Journal for Numerical Methods in Fluids, 2010, 62(4):449-472. |
[11] | LEUGERING G. Dynamic domain decomposition of optimal control problems for networks of strings and Timoshenko beams[J]. SIAM Journal on Control and Optimal, 1999, 37(6):1649-1675. |
[12] | BJORSTAD P E, WIDLUND O B. Iterative methods for the solution of elliptic problems onregionsp artitionedi nto substructures[J]. SIAM Journal on Numerical Analysis, 1986, 23(6):1097-1120. |
[13] | BRAMBLE J H, PASCIAK J E, SCHARTA A H. The construction of preconding for elliptic problems by substructuring[J]. Mathematics of Computation, 1986, 47(175):103-134. |
[14] | BERGGREN M, HEINKENSCHLOSS M. Parallel solution of optimal control problems by time-domain decomposition[C] // Computational Science for the 21st Century, BRISTEAU M O. New York: Wiley, 1997. |
[15] | BENAMOU J D. Domain decomposition, optimal control of system governed by partial differential equations, and Sysnthesis of feedback laws[J]. Journal of Optimization Theory and Applications, 1999, 102(1):15-36. |
[16] | BENAMOU J D. Décompositon de domaine pour le contr?le optimal de systèmes gouvernés par des equations dEvolution[J]. Comptes Rendus de lAcadémie des Sciences de Paris, Série I, 1997, 324:1065-1070. |