All Title Author
Keywords Abstract

-  2018 

Influences of Na-Mn Ratio on Electrochemical Performances and Intercalation-Deintercalation Processes of Sodium Ion in NaxMnO2

DOI: 10.13208/j.electrochem.180207

Keywords: 钠离子电池,正极材料,NaxMnO2,钠离子脱嵌,
sodium-ion battery
,cathode,NaxMnO2,sodium-ion intercalation/deintercalation

Full-Text   Cite this paper   Add to My Lib


摘要 采用高温固相法合成了NaxMnO2,并用X-射线衍射、X-射线光电子能谱、场发射扫描电镜、循环伏安、电化学阻抗谱和恒流充放电技术研究了钠锰比对材料的形态结构、电化学性能和钠离子脱嵌过程的影响. 结果表明,NaxMnO2 主要由Na0.7MnO2 和Na0.91MnO2 组成,且Na0.91MnO2 的量随着钠锰比的增加而增加. 随着钠锰比的增加,SEI 膜扩散、界面电化学反应和固相扩散的活化能先减少后增大,而材料的放电比容量则先增大后减少. 当钠锰比为0.80 时,合成的材料1C 倍率下首次放电比容量为152.8 mAh·g-1,50 次循环容量保持率为80.6%,5C 大倍率下放电比容量为88.3 mAh·g-1,表现出了良好的循环性能和倍率性,相应的SEI 膜扩散、界面电化学反应和固相扩散过程的活化能分别为68.23、40.07 和57.62 KJ·mol-1


[1]  Xia Y(夏阳), Fang R Y(方如意), Shi S(施思), et al. Review on synthesis of electrode materials derived from biological templates for lithium-ion batteries[J]. Materials Review(材料导报), 2016, 30(1): 128-135.
[2]  Wang L B, Wang C C, Zhang N, et al. High anode performance of in situ formed Cu2Sb nanoparticles integrated on Cu foil via replacement reaction for sodium-ion batteries [J]. ACS Energy Letters, 2017, 2(1): 256-262.
[3]  Jia X P, Chen M. Review of electrode materials for sodium-ion batteries[J]. Journal of China Academy of Electronics Information Technology, 2012, 7(6): 581-585.
[4]  Billaud J, Clement R J, Armstrong A R, et al. α-NaMnO2:a high-performance cathode for sodium-ion batteries [J].Journal of the American Chemical Society, 2014, 136(49):17243-17248.
[5]  Ma X, Chen H, Ceder G. Electrochemical properties of monoclinic NaMnO2[J]. Journal of The Electrochemical Society, 2011, 158(2): A1307-A1312.
[6]  Xiang X, Zhang K, Chen J. Recent advances and prospects of cathode materials for sodium-ion batteries[J]. Advanced Materials, 2015, 46(44): 5343-5364.
[7]  Zhuang Q C(庄全超), Xu S D(徐守冬), Qiu X Y(邱祥云), et al. Diagnosis of electrochemical impedance spectroscopy in lithium-ion batteries[J]. Progress in Chemistry(化学进展), 2010, 22(6): 1044-1057.
[8]  Qian J F(钱江锋), Gao X P(高学平), Yang H X(杨汉西). Electrochemical Na-storage materials and their applications for Na-ion batteries[J]. Journal of Electrochemistry(电化学), 2013, 19(6): 523-529.
[9]  Su D,Wang C, Ahn H J, et al. Single crystalline Na0.7MnO2,nanoplates as cathode materials for sodium-ion batteries with enhanced performance[J]. Chemistry-A European Journal, 2013, 19(33): 10884-10889.
[10]  SohnDR, LimS J, NamDH, et al. Fabrication of Na0.7MnO2/C composite cathode material by simple heat treatment for high-power Na-ion batteries[J]. Electronic Materials Letters, 2018, 14: 30-36.
[11]  Zhao L W, Ni J F, Wang H B, et al. Na0.44MnO2-CNT electrodes for non-aqueous sodium batteries[J]. RSC Advances,2013, 3(18): 6650-6655.
[12]  Liu C, Li J G, Zhao P X, et al. Fast preparation of Na0.44MnO2, nanorods via a high NaOH concentration hydrothermal soft chemical reaction and their lithium storage properties[J]. Journal of Nanoparticle Research, 2015,17(3): 142.
[13]  Bucher N, Hartung S, Gocheva I, et al. Combustion-synthesized sodium manganese (cobalt) oxides as cathodes for sodium ion batteries[J]. Journal of Solid State Electrochemistry,2013, 17(7): 1923-1929.
[14]  Zhang S Q(张淑琼). Preparation and properties research of non-noble metal oxide for energy storage[D]. Anhui Normal University(安徽师范大学), 2015.
[15]  Shen K Y, Miklos L, Wang L, et al. Spray pyrolysis and electrochemical performance of Na0.44MnO2 for sodium-ion battery cathodes[J].MRSCommunications, 2017, 7(1): 74-77.
[16]  Kim H, Dong J K, Seo D H, et al. Ab initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery[J]. Chemistry of Materials, 2012, 24(6): 1205-1211.
[17]  Shen W(沈伟), Shen L Y(申兰耀), Zhang Z Y(张振宇), et al. Recent developments in cathode materials for Na-ion batteries[J]. Advanced Materials Industry(新材料产业), 2017(5): 61-64.
[18]  Kim H, Kim H, Ding Z, et al. Recent progress in electrode materials for sodium-ion batteries [J]. Advanced Energy Materials, 2016, 6(19): 1600943.
[19]  Molenda J, Stoksa A, Than D. Relation between ionic and electronic defects of Na0.7MnO2, bronze and its electrochemical properties[J]. Solid State Ionics, 1987, 24(1):33-38.
[20]  Hou X(侯旭), Tang ZW(唐子威), Pei B(裴波). Research progress of electrode-electrolyte interfacial filmin lithiumion batteries[J]. Marine Electric & Electronic Technology (船电技术), 2017, 37(7): 64-67.
[21]  Yang T Y(杨同勇). Study on synthesis and modification of 5V cathode material LiNi0.5Mn1.5O4 for lithium-ion battery[D]. Harbin Institute of Technology(哈尔滨工业大学), 2011.
[22]  Xue M M(薛明明). Structural characterization and properties of monoclinic NaMnO2[D]. Northeast Normal University(东北师范大学), 2010.
[23]  Shaju K M, Subba Rao G V, Chowdari B V R. Spinel phases LiMMnO2(M=Co, CoAl, CoCr, CrAl) as cathodes for lithium-ion batteries[J]. Solid State Ionics, 2002, 148 (3): 343-350.
[24]  Ye F P(叶飞鹏), Wang L(王莉), Lian F(连芳), et al. Advance in Na-ion batteries[J]. Chemical Industry and Engineering Progress(化工进展), 2013, 32(8): 1789-1795.
[25]  Liu Y C(刘永畅), Chen C C(陈程成), Zhang N(张宁), et al. Research and application of key materials for sodium-ion batteries[J]. Journal of Electrochemistry(电化学),2016, 22(5): 437-452.
[26]  Wang C C, Wang L B, Li F J, et al. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes[J]. Advanced Materials, 2017, 29(35): 1702212.
[27]  Luo C, Langrock A, Fan X L, et al. P2-type transition metal oxides for high performance Na-ion battery cathodes [J].Journal of Materials Chemistry A, 2017, 5(34): 18214-18220 .
[28]  Huang J J, Luo J. Composites of sodium manganese oxides with enhanced electrochemical performance for sodium-ion batteries: Tailoring properties via controlling microstructure[J]. Science China-Technological Sciences,2016, 59(7): 1042-1047.


comments powered by Disqus