All Title Author
Keywords Abstract

-  2018 

Bird-Carreau型黏性van der Waals流体周期解的渐近稳定性

DOI: 10.13543/j.bhxbzr.2018.01.020

Keywords: Bird-Carreau型黏性,van der Waals流体,周期边界,
Bird-Carreau type viscosity
,van der Waals fluids,periodic boundary

Full-Text   Cite this paper   Add to My Lib


讨论了一维可压缩黏性van der Waals流体系统的渐近稳定性,其中黏性系数为满足Bird-Carreau模型的非线性函数,压力为非凸函数。通过构造能量函数并运用能量估计方法及单调算子理论,证明得出:大黏性条件下初值位于稳定区域时,以及大黏性、小扰动条件下初值位于亚稳定区域时,该类van der Waals流体的解是渐近稳定的。
Abstract:In this paper, the asymptotic stability of a one-dimensional compressible viscous van der Waals fluids system is discussed, where the viscosity coefficient is a nonlinear function that satisfies the Bird-Carreau model, and the pressure is a non-convex function. By constructing the energy function and using the energy estimation method and the monotone operator theory, we prove that:under the condition of large viscosity, the solutions of the non-Newtonian fluid are asymptotically stable when the initial value is either located in the stable region, or located in the metastable region under small disturbance conditions.


comments powered by Disqus