All Title Author
Keywords Abstract

-  2018 

兼具高质量和高体积能量密度的水系全金属氧化物不对称超级电容器
An Aqueous All-Metal Oxide Asymmetric Supercapacitor with High Gravimetric and Volumetric Energy Densities

DOI: 10.13208/j.electrochem.180204

Keywords: 金属氧化物,Co-Ni 氧化物纳z米片,RuO2纳米球,高质量和高体积能量密度,水系不对称超级电容器,
metal oxide
,Co-Ni oxide nanoflakes,RuO2 nanoshpheres,high gravimetric and volumetric energy density,aqueous asymmetric supercapacitors

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 超级电容器只有兼具高质量和高体积能量密度才能拥有更广泛的应用价值.本文采用具有纳米结构及高填充密度的RuO2(纳米球,1.69 g·cm-3)和Co-Ni氧化物(纳米片,2.14 g·cm-3)分别作为负极和正极材料,成功地构筑了RuO2 // KOH / / Co-Ni氧化物非对称超级电容器.所得不对称超级电容器具有高电压窗口(0~1.5V)、高质量比容量(217.5 F·g-1)和高体积比容量(412.3 F·cm-3)、高质量能量密度(61.8 Wh·kg-1)和高体积能量密度(121 Wh·L-1)的优良性能,在1.4V的电压下以2 A·g-1的电流密度历经5000次循环后比容量保持率为87%.
Only with both high gravimetric and high volumetric energy densities, can supercapacitors find more extensive applications.In this paper, by making good use of the interesting nanostructures and the high packing densities of RuO2 (nanoshpheres,1.69 g·cm-3) and Co-Ni oxide (nanoflakes, 2.14 g·cm-3), the RuO2//KOH//Co-Ni oxide all-metal oxide asymmetric supercapacitors with high performance were successfully fabricated, which led to the maximum specific capacitance of 217.5 F·g-1 (412.3 F·cm-3) and specific energy density of 61.8 Wh·kg-1 (121 Wh·L-1) in a cell voltage between 0 and 1.5 V in KOH electrolyte. In addition, the constructed supercapacitor device could retain 87% of the initial specific capacitance even at 5000th cycle with the cell voltage of 1.4 V at a current density of 2 A·g-1 in life cycle test, indicating high electrochemical stability

References

[1]  Mao C P, Liu S G, Pang L, et al. Ultrathin MnO2 nanosheets grown on fungal conidium-derived hollow carbon spheres as supercapacitor electrodes[J]. RSC Advances, 2016, 6(7):5184-5191.
[2]  Lei Y, Wang Y Y, Yang W, et al. Self-assembled hollow urchin-like NiCo2O4 microspheres for aqueous asymmetric supercapacitors[J]. RSC Advances, 2015, 5(10): 7575-7583.
[3]  Lin D, Zhang X Y, Zeng Y X, et al. Recent advances on carbon and transition metallic compound electrodes for high-performance supercapacitors[J]. Journal of Electrochemistry(电化学), 2017(5): 560-580.
[4]  Lang J W, Zhang X, Wang R T, et al. Promotion strategy of the energy density for supercapacitors[J]. Journal of Electrochemistry(电化学), 2017(5): 507-532.
[5]  Xu K B, Zou R J, Li W Y, et al. Design and synthesis of 3D interconnected mesoporous NiCo2O4@CoxNi1-x (OH)2 core-shell nanosheet arrays with large areal capacitance and high rate performance for supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(26): 10090-10097.
[6]  Chen L Y, Hou Y, Kang J L, et al. Asymmetric metal oxide pseudocapacitors advanced by three-dimensional nanoporous metal electrodes[J]. Journal of Materials Chemistry A, 2014, 2(22): 8448-8455.
[7]  Liu X Y, Gao Y Q, Yang G W. Flexible, transparent and super-long life supercapacitor based on ultrafine Co3O4 nanocrystals electrodes[J]. Nanoscale, 2016, 8(7): 4227-4235.
[8]  Jiang J, Li L P, Liu Y N, et al. Uniform implantation of CNTs on total activated carbon surfaces: A smart engineering protocol for commercial supercapacitor applications[J]. Nanotechnology, 2017, 28(14): 145402.
[9]  Wang X, Yan C Y, Sumboja A, et al. High performance porous nickel cobalt oxide nanowires for asymmetric supercapacitor[J]. Nano Energy, 2014, 3(1): 119-126.
[10]  Rakhi R B, Lekshmi M L. Reduced graphene oxide based ternary nanocomposite cathodes for high-performance aqueous asymmetric supercapacitors [J]. Electrochimica Acta, 2017, 231: 539-548.
[11]  Lang J W, Yan X B, Xue Q J. Facile preparation and electrochemical characterization of cobalt oxide/multi-walled carbon nanotube composites for supercapacitors[J]. Journal of Power Sources, 2011, 196(18): 7841-7846.
[12]  Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin[J]. Science, 2014, 343(6176): 1210-1211.
[13]  Ma W Q, Nan H H, Gu Z X, et al. Superior performance asymmetric supercapacitors based on ZnCo2O4@MnO2 coreshell electrode[J]. Journal of Materials Chemistry A, 2015,3(10): 5442-5448.
[14]  Long C, Zheng M T, Xiao Y, et al. Amorphous Ni-Co binary oxide with hierarchical porous structure for electrochemical capacitors[J]. ACS Applied Materials & Interfaces, 2015, 7(44): 24419-24429.
[15]  Wang R T, Yan X B, Lang J W, et al. A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials[J]. Journal of Materials Chemistry A, 2014, 2(32): 12724-12732.
[16]  Long J W, Bélanger D, Brousse T, et al. Asymmetric electrochemical capacitors—stretching the limits of aqueous electrolytes[J]. MRS Bulletin, 2011, 36(7): 513-522.
[17]  Peng Z K, Liu X, Meng H, et al. Design and tailoring of the 3D macroporous hydrous RuO2 hierarchical architectures with a hard-template method for high-performance supercapacitors[J]. Acs Applied Materials & Interfaces, 2016, 9(5): 4577-4586.
[18]  Zhou Q W, Xing J C, Gao Y F, et al. Ordered assembly of NiCo2O4 multiple hierarchical structures for high-performance pseudocapacitors[J]. ACS Applied Materials &Interfaces, 2014, 6(14): 11394-11402.
[19]  Kong L B, Liu M, Lang J W, et al. Asymmetric supercapacitor based on loose-packed cobalt hydroxide nanoflake materials and activated carbon[J]. Journal of The Electrochemical Society, 2009, 156(12): A1000-A1004.
[20]  Zhang J T, Jiang J W, Li H L, et al. A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes[J]. Energy & Environmental Science, 2011, 4(10): 4009-4015.
[21]  Shen L F, Yu L, Yu X Y, et al. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors[J].Angewandte Chemie-International Edition, 2015, 54 (6):1868-1872.
[22]  Bonso J, Kalaw G, Ferraris J. High surface area carbon nanofibers derived from electrospun PIM-1 for energy storage applications[J]. Journal of Materials Chemistry A, 2013, 2(2): 418-424.
[23]  Liu L L, Niu Z Q, Chen J. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations[J]. Chemical Society Reviews, 2016, 45(15):4340-4363.
[24]  Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J].Energy & Environmental Science, 2014, 7(5): 1597-1614.
[25]  Li X C, Le W, Shi J H, et al. Multishelled nickel-cobalt oxide hollow microspheres with optimized compositions and shell porosity for high-performance pseudocapacitors [J]. ACS Applied Materials & Interfaces, 2016, 8 (27):17276-17283.
[26]  Wu H B, Pang H, Lou X W. Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors[J]. Energy & Environmental Science,2013, 6(12): 3619-3626.
[27]  Yi H, Wang H, Jing Y, et al. Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedronswith super-long cycle life[J]. Journal of Power Sources, 2015, 285: 281-290.
[28]  Chen H, Wang M Q, Yu Y N, et al. Assembling hollow cobalt sulfide nanocages array on graphene-like manganese dioxide nanosheets for superior electrochemical capacitors[J]. ACS Applied Materials & Interfaces, 2017, 9(40): 35040-35047.
[29]  Costentin C, Porter T R, Savéant J M. How do pseudocapacitors store energy Theoretical analysis and experimental illustration[J]. ACS Applied Materials & Interfaces,2017, 9(10): 8649 8658.
[30]  Cheng D, Yang Y F, Xie J L, et al. Hierarchical NiCo2O4@NiMoO4 core-shell hybrid nanowire/nanosheet arrays for high-performance pseudocapacitors[J]. Journal of Materials Chemistry A, 2015, 3(27): 14348-14357.
[31]  Yuan C Z, Li J Y, Hou L R, et al. Ultrathin mesoporous NiCo2O4 manosheets supported on Ni foam as advanced electrodes for supercapacitors [J]. Advanced Functional Materials, 2012, 22(21): 4592-4597.
[32]  Chen Y, Zhang X, Zhang D C, et al. Increased electrochemical properties of ruthenium oxide and graphene/ruthenium oxide hybrid dispersed by polyvinylpyrrolidone[J]. Journal of Alloys & Compounds, 2012, 541(30):415-420.
[33]  Xie L J, Wu J F, Chen C M, et al. A novel asymmetric supercapacitor with an activated carbon cathode and a reduced graphene oxide-cobalt oxide nanocomposite anode [J]. Journal of Power Sources, 2013, 242(35): 148-156.
[34]  Jiang J, Li L P, Liu Y N, et al. Uniform implantation of CNTs on total activated carbon surfaces: a smart engineering protocol for commercial supercapacitor applications [J]. Nanotechnology, 2017, 28(14): 145402.
[35]  Wang F X, Xiao S Y, Hou Y Y, et al. Electrode materials for aqueous asymmetric supercapacitors[J]. RSC Advances, 2013, 3(32): 13059-13084.
[36]  Yu L P, Chen Z. attempts to improve the energy capacity of capacitive electrochemical energy storage devices [J]. Journal of Electrochemistry(电化学), 2017(5): 533-547.
[37]  Sun J F, Wu C, Sun X F, et al. Recent progresses in highenergy-density all pseudocapacitive electrode materialsbased asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(20): 9443-9464.

Full-Text

comments powered by Disqus