All Title Author
Keywords Abstract

-  2018 

碳包覆硅/石墨复合材料的制备及其电化学性能研究
Preparations and Electrochemical Performances of Carbon Coated Silicon/Graphite Composites

DOI: 10.13208/j.electrochem.170728

Keywords: 锂离子电池,负极材料,硅基复合材料,碳包覆,
lithium ion battery
,anode materials,silicon-based composite materials,carbon coating

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 本文以工业硅粉(600目)为原料,通过高能球磨和热解包碳方法制备了碳包覆纳米硅,在此基础上采用简单的机械球磨方法制备了碳包覆/石墨复合材料,并系统研究了碳包覆量及硅/石墨比例对碳包覆硅/石墨复合材料电化学性能的影响. 与商业纳米硅粉/石墨复合材料相比,工业硅粉/石墨复合材料的循环性能及倍率性能均得到改善. 通过高能球磨和热处理法得到的碳包覆材料为无定形碳和晶态硅材料的复合,所获碳包覆硅材料一次颗粒的粒径在100 ~ 200 nm左右. 碳包覆量对材料的电化学性能有着重要影响,Si/C-2-1复合材料表现出高的可逆比容量、良好的倍率性能和循环稳定性,在0.1C倍率下,可逆比容量高达492.6 mAh·g-1,循环100周后容量保持率达 85.8%,1C 电流密度下放电比容量达369.7 mAh·g-1,为 0.1C 的73.9%. 提高碳包覆硅/石墨复合材料中硅含量的比例可以提升其比容量,当硅含量达到20%时,Si/C-2-3复合材料在0.1C倍率下可逆比容量达到600.4 mAh·g-1,但材料循环性能有所下降,说明石墨在稳定硅/碳复合材料循环性能方面发挥着非常重要的作用.
In this work, the carbon coated silicon (Si@C) composite materials were synthesized based on the industrial silicon powder (600 meshes) via a high energy ball milling combing with in-situ carbon coating (carbonization) method. The Si@C/graphite (Si/C) composite anode materials were prepared by a simple mechanical ball-milling approach. The effects of carbon coating and the ratio of Si to graphite on electrochemical performances of Si/graphite composite materials were investigated systematically. Compared with the nano-Si/graphite composites, the Si/C composites showed higher reversible capacity, better rate capability and cycle performance. The Si@C materials composited of amorphous carbon and crystal silicon with the primary particles size of 100 ~ 200 nm. The Si/C-2-1 composite also revealed high reversible specific capacity, good rate performance and cycling stability. The Si/C-2-1 exhibited the reversible capacity of 492 mAh·g-1 with a capacity retention of 85.8% after 100 cycles at 0.1C. Moreover, the reversible discharge capacity reached 369.7 mAh·g-1 when cycled at 1C, corresponding to 73.9% of that at 0.1C. The Si/C-2-3 which contained 20% silicon displayed a higher reversible capacity of 600.4 mAh·g-1 when cycled at 0.1C. However, the cycling stability of these composites decreased with increasing Si content, indicating that the graphite content played an important role to improve the cycle performance of the composite

References

[1]  Matsuo Y, Fumita K, Fukutsuka T, et al. Butyrolactone derivatives as electrolyte additives for lithium-ion batteries with graphite anodes[J]. Journal of Power Sources, 2003, 119(S1): 373-377.
[2]  Chen Y, Du N, Zhang H, et al. Facile synthesis of uniform MWCNT@Si nanocomposites as high-performance anode materials for lithium-ion batteries[J]. Journal of Alloys & Compounds, 2015, 622: 966-972.
[3]  Michan A L, Leskes M, Grey C P. Voltage dependent solid electrolyte interphase formation in silicon electrodes: Monitoring the formation of organic decomposition products[J]. Chemistry of Materials, 2016, 28(1): 385-398.
[4]  Yoo J K, Kim J, Choi M J, et al. Extremely high yield conversion from low-cost sand to high-capacity Si electrodes for Li-ion batteries[J]. Advanced Energy Materials, 2015, 4(16): 385-398.
[5]  Zhang W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(1): 13-24.
[6]  Fu Y P(傅焰鹏), Chen H X (陈慧鑫), Yang Y(杨勇). Silicon nanowires as anode materials for lithium ion batteries[J]. Journal of Electrochemistry(电化学), 2009, 15(1): 56-61.
[7]  Song H C, Wang H X, Lin Z X, et al. Highly connected silicon-copper alloy mixture nanotubes as high-rate and durable anode materials for lithium-ion batteries[J]. Advanced Functional Materials, 2016, 26(4): 524-531.
[8]  Valvo M. Silicon-based nanocomposite for advanced thin film anodes in lithium-ion batteries[J]. Journal of Materials Chemistry, 2011, 22(4): 1556-1561.
[9]  Yu J, Zhan H H, Wang Y H, et al. Graphite microspheres decorated with Si particles derived from waste solid of organosilane industry as high capacity anodes for Li-ion batteries[J]. Journal of Power Sources, 2013, 228(11): 112-119.
[10]  Zhang Y, Zhang X G, Zhang H L, et al. Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries[J]. Electrochimica Acta, 2006, 51(23): 4994-5000.
[11]  Wang B, Li X L, Zhang X F, et al. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes[J]. ACS Nano, 2013, 7(2): 1437-1445.
[12]  Obrovac M N, Christensen L. Structural changes in silicon anodes during lithium insertion/extraction[J]. Electrochemical and Solid State Letters, 2004, 7(5): A93-A96.
[13]  Aricò A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(5): 366-377.
[14]  Kasavajjula U, Wang C, Appleby A J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J]. Journal of Power Sources, 2007, 163(2): 1003-1039.
[15]  Li C L(李纯莉), Yang G(杨广), Zhang P(张平), et al. Electrochemical properties of graphene/porous nano-silicon anode[J]. Journal of Electrochemistry(电化学), 2015, 21(6): 572-576.
[16]  Cho J H, Li X L, Picraux S T. The effect of metal silicide formation on silicon nanowire-based lithium-ion battery anode capacity[J]. Journal of Power Sources, 2012, 205: 467-473.
[17]  Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.

Full-Text

comments powered by Disqus