All Title Author
Keywords Abstract


Investigating the Use of Combined Hydrogen, Heat and Power System for Omar AL-Mukhtar University Campus

DOI: 10.4236/abc.2019.91003, PP. 31-44

Keywords: Hydrogen, Feedstock, Anaerobic Digestion, Pressure Swing Adsorption, Renewable Energy

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper investigates the use of a combined hydrogen, heat, and power (CHHP) system for Omar Al-Mukhtar University campus using local resources. Based on previous local resource assessment studies, the hydrogen team of Omar AL-Mukhtar University (OMU) selected the fuelcell energy DFC4000TM unit. This study shows that the CHHP system can provide electricity to power the university campus, thermal energy for heating the anaerobic digester, and hydrogen for transportation, back-up power and other needs. Consequently, using the alternative fuels and renewable energy resources for OMU campus can lower fossil fuel consumption and, therefore, greenhouse gas emissions (GHG).

References

[1]  Hamad, T.A., Agll, A.A., Hamad, Y.M., Bapat, S., Thomas, M., Martin, K.B., et al. (2014) Study of a Molten Carbonate Fuel Cell Combined Heat, Hydrogen and Power System. Energy, 75, 579-588.
https://doi.org/10.1016/j.energy.2014.08.020
[2]  Hamad, T.A., Agll, A.A., Hamad, Y.M., Bapat, S., Thomas, M., Martin, K.B., et al. (2013) Study of a Molten Carbonate Fuel Cell Combined Heat, Hydrogen and Power System: End-Use Application. Case Studies in Thermal Engineering, 1, 45-50.
https://doi.org/10.1016/j.csite.2013.09.001
[3]  Hamad, T.A., Agll, A.A., Hamad, Y.M., Bapat, S., Thomas, M., Martin, K.B., et al. (2014) Hydrogen Recovery, Cleaning, Compression, Storage, Dispensing, Distribution System and End-Uses on the University Campus from Combined Heat, Hydrogen and Power System. International Journal Hydrogen Energy, 39, 647-653.
https://doi.org/10.1016/j.ijhydene.2013.10.111
[4]  Hamad, T.A., Agll, A.A., Hamad, Y.M., Bapat, S., Thomas, M., Martin, K.B., et al. (2014) Hydrogen Production and End-Uses from Combined Heat, Hydrogen and Power System by Using Local Resources. Renewable Energy, 71, 381-386.
https://doi.org/10.1016/j.renene.2014.05.054
[5]  Vera, D., Jurado, F., de Mena, B. and Schories, G. (2011) Comparison between Externally Fired Gas Turbine and Gasifier-Gas Turbine System for the Olive Oil Industry. Energy, 36, 6720-6730.
https://doi.org/10.1016/j.energy.2011.10.036
[6]  Hamad, T.A., Agll, A.A., Hamad, Y.M., Bapat, S., Thomas, M., Martin, K.B., et al. (2014) Study of Combined Heat, Hydrogen and Power System Based on a Molten Carbonate Fuel Cell Fed by Biogas Produced by Anaerobic Digestion. Energy Conversion and Management, 81, 184-191.
https://doi.org/10.1016/j.enconman.2014.02.036
[7]  Hamad, Y.M., Hamad, T.A., Agll, A.A., Bapat, S., Thomas, M., Martin, K.B., et al. (2013) Molten Carbonate Fuel Cell Combined Heat, Hydrogen and Power System: Feedstock Analysis. Energy Science and Technology, 6, 1-5.
[8]  Agll, A.A., Hamada, Y.M., Hamada, T.A., Thomasb, M., Bapata, S., Martinc, K.B., et al. (2013) Study of a Molten Carbonate Fuel Cell Combined Heat, Hydrogen and Power System: Energy Analysis. Applied Thermal Engineering, 59, 634-638.
https://doi.org/10.1016/j.applthermaleng.2013.06.030
[9]  Demirbas, A. (2008) Importance of Biomass Energy Sources for Turkey. Energy Policy, 36, 834-842.
https://doi.org/10.1016/j.enpol.2007.11.005
[10]  Hamad, T.A., Agll, A.A., Hamad, Y.M., Sheffield, J.W. (2014) Solid Waste as Renewable Source of Energy: Current and Future Possibility in Libya. Case Studies in Thermal Engineering, 4, 144-152.
https://doi.org/10.1016/j.csite.2014.09.004
[11]  Odlare, M., Arthurson, V., Pell, M., Svensson, K., Nehrenheim, E. and Abubaker, J. (2011) Land Application of Organic Waste—Effects on the Soil Ecosystem. Applied Energy, 88, 2210-2218.
https://doi.org/10.1016/j.apenergy.2010.12.043
[12]  Yu, M., Muy, S., Quader, F., Bonifacio, A., Varghese, R., Clerigo, E., et al. (2013) Combined Hydrogen, Heat and Power (CHHP) Pilot Plant Design. International Journal of Hydrogen Energy, 38, 4881-4888.
https://doi.org/10.1016/j.ijhydene.2013.02.006
[13]  Pronto, J.L. and Gooch, C.A. (2010) Greenhouse Gas Emission Reductions for Seven On-Farm Dairy Manure-Based Anaerobic Digestion Systems—Final Results. ASABE, 7, 735-742.
http://elibrary.asabe.org/abstract.asp?aid=32617
[14]  Cantrell, K.B., Ducey, T. and Ro, K.S. (2008) Livestock Waste-to-Bioenergy Generation Opportunities. Bioresource Technology, 99, 7941-7953.
https://doi.org/10.1016/j.biortech.2008.02.061
[15]  Ghaderi, A., Parsa Moghaddam, M. and Sheikh-El-Eslami, M.K. (2014) Energy Efficiency Resource Modeling in Generation Expansion Planning. Energy, 68, 529-537.
https://doi.org/10.1016/j.energy.2014.02.028
[16]  Larrasoana, J.C., Roberts, A.P., Rohling, E.J., Winklhofer, M. and Wehausen, R. (2003) Three Million Years of Monsoon Variability over the Northern Sahara. Climate Dynamics, 21, 689-698.
https://doi.org/10.1007/s00382-003-0355-z
[17]  El Jrushi, G.S. and Veziro Tglu, T. (1990) Solar-Hydrogen Energy System for Libya. International Journal of Hydrogen Energy, 15, 885-894.
https://doi.org/10.1016/0360-3199(90)90077-C
[18]  Bouckaert, S., Assoumou, E., Selosse, S. and Maïzi, N. (2014) A Prospective Analysis of Waste Heat Management at Power Plants and Water Conservation Issues Using a Global TIMES Model. Energy, 68, 80-91.
https://doi.org/10.1016/j.energy.2014.02.008
[19]  Hawas, M.M. and Muneer, T. (1980) Monthly Average Daily Insolation on Tilted Collectors in Libya. Energy Conversion and Management, 20, 213-218.
https://doi.org/10.1016/0196-8904(80)90037-0
[20]  Sawalem, M., Selic, E. and Herbell, J. (2009) Hospital Waste Management in Libya: A Case Study. Waste Management, 29, 1370-1375.
https://doi.org/10.1016/j.wasman.2008.08.028
[21]  De Prá, M.C., Anschau, A., Busso, C., Gabiatti, N. and Bortoli, M. (2019) Effect of Short-Chain Fatty Acid Production on Biogas Generation. Improving Biogas Production, 9, 199-216.
https://doi.org/10.1007/978-3-030-10516-7_9
[22]  Peces, M., Astals, S., Clarke, W.P. and Jensen, P.D. (2016) Semi-Aerobic Fermentation as a Novel Pre-Treatment to Obtain VFA and Increase Methane Yield from Primary Sludge. Bioresource Technology, 200, 631-638.
https://doi.org/10.1016/j.biortech.2015.10.085
[23]  Huang, W. and Zhang, Y. (2011) Energy Efficiency Analysis: Biomass-to-Wheel Efficiency Related with Biofuels Production, Fuel Distribution, and Powertrain Systems. PLoS ONE, 6, Article ID: 0022113.
https://doi.org/10.1371/journal.pone.0022113
[24]  Rivarolo, M., Bogarin, J., Magistri, L. and Massardo, A. (2012) Time-Dependent Optimization of a Large Size Hydrogen Generation Plant Using “Spilled” Water at Itaipu 14 GW Hydraulic Plant. International Journal of Hydrogen Energy, 37, 4434-5443.
https://doi.org/10.1016/j.ijhydene.2011.09.015
[25]  Tápparo, D.C., do Amaral, A.C., Steinmetz, R.L.R. and Kunz, A. (2019) Co-Digestion of Animal Manure and Carcasses to Increase Biogas Generation. Improving Biogas Production, 9, 99-116.
https://doi.org/10.1007/978-3-030-10516-7_5
[26]  Rapport, J.L., Zhang, R., Jenkins, B.M., Hartsough, B.R. and Tomich, T.P. (2011) Modeling the Performance of the Anaerobic Phased Solids Digester System for Biogas Energy Production. Biomass Bioenergy, 35, 1263-1272.
https://doi.org/10.1016/j.biombioe.2010.12.021
[27]  Locher, C., Meyer, C. and Steinmetz, H. (2012) Operating Experiences with a Molten Carbonate Fuel Cell at Stuttgart-Môhringen Wastewater Treatment Plant. Water Science and Technology, 65, 789-794.
https://doi.org/10.2166/wst.2012.463
[28]  Intanoo, P., Chaimongkol, P. and Chavadej, S. (2016) Hydrogen and Methane Production from Cassava Wastewater Using Two-Stage Upflow Anaerobic Sludge Blanket Reactors (UASB) with an Emphasis on Maximum Hydrogen Production. International Journal Hydrogen Energy, 41, 6107-6114.
https://doi.org/10.1016/j.ijhydene.2015.10.125
[29]  Dahiya, S., Kumar, A.N., Shanthi Sravan, J., Chatterjee, S., Sarkar, O. and Mohan, S.V. (2018) Food Waste Biorefinery: Sustainable Strategy for Circular Bioeconomy. Bioresource Technology, 248, 2-12.
https://doi.org/10.1016/j.biortech.2017.07.176
[30]  Banks, C.J., Salter, A.M., Heaven, S. and Riley, K. (2011) Energetic and Environmental Benefits of Co-Digestion of Food Waste and Cattle Slurry: A Preliminary Assessment. Resources, Conservation and Recycling, 56, 71-79.
https://doi.org/10.1016/j.resconrec.2011.09.006
[31]  He, C., Giannis, A. and Wang, J. (2013) Conversion of Sewage Sludge to Clean Solid Fuel Using Hydrothermal Carbonization: Hydrochar Fuel Characteristics and Combustion Behavior. Applied Energy, 111, 257-266.
https://doi.org/10.1016/j.apenergy.2013.04.084

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal