All Title Author
Keywords Abstract


Decay Rates of the Compressible Hall-MHD Equations for Quantum Plasmas

DOI: 10.4236/jamp.2018.611203, PP. 2402-2424

Keywords: Compressible Hall-MHD Equations, Global Existence, Optimal Decay Rates, Energy Estimates

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we consider the global existence and decay rates of strong solutions to the three-dimensional compressible quantum Hall-magneto-hydrodynamics equations. By combing the Lp-Lq estimates for the linearized equations and a standard energy method, the global existence and its convergence rates are obtained in various norms for the solution to the equilibrium state in the whole space when the initial perturbation of the stationary solution is small in some Sobolev norms. More precisely, the decay rates in time of the solution and its first order derivatives in L2-norm are obtained when the L1-norm of the perturbation is bounded.

References

[1]  Bohm, D. (1952) A Suggested Interpretation of the Quantum Theory in Terms of Hidden Variables: II. Physical Review, 85, 180-193.
https://doi.org/10.1103/PhysRev.85.180
[2]  Wigner, E. (1932) On the Quantum Correction for Thermodynamic Equilibrium. Physical Review, 40, 749-759.
https://doi.org/10.1103/PhysRev.40.749
[3]  Ancona, M.G. and Iafrate, G.J. (1989) Quantum Correction to the Equation of State of an Electron gas in Semiconductor. Physical Review B, 39, 9536-9540.
https://doi.org/10.1103/PhysRevB.39.9536
[4]  Ancona, M.G. and Tiersten, H.F. (1987) Macroscopic Physics of the Silicon Inversion Layer. Physical Review B, 35, 7959-7965.
https://doi.org/10.1103/PhysRevB.35.7959
[5]  Haas, F. (2011) Quantum Plasmas: An Hydrodynamic Approach. Springer, New York.
https://doi.org/10.1007/978-1-4419-8201-8
[6]  Pu, X. and Guo, B. (2015) Global Existence and Semiclassical Limit for Quantum Hydrodynamic Equations with Viscosity and Heat Conduction. Kinetic and Related Models, 9, 165-191.
https://doi.org/10.3934/krm.2016.9.165
[7]  Pu, X. and Xu, X. (2017) Asymptotic Behaviors of the Full Quantum Hydrodynamic Equations. Journal of Mathematical Analysis and Applications, 454, 219-245.
https://doi.org/10.1016/j.jmaa.2017.04.053
[8]  Pu, X. and Xu, X. (2017) Decay Rates of the Magnetohydrodynamic Model for Quantum Plasmas. Zeitschrift für angewandte Mathematik und Physik, 68, 18.
https://doi.org/10.1007/s00033-016-0762-8
[9]  Jungel, A. and Milisic, J.P. (2011) Full Compressible Navier-Stokes Equations for Quantum Fluids: Derivation and Numerical Solution. Kinetic Related Models, 4, 785-807.
https://doi.org/10.3934/krm.2011.4.785
[10]  Pu, X. and Guo, B. (2016) Optimal Decay Rate of the Compressible Quantum Navier-Stokes Equations. Annals of Applied Mathematics, 32, 275-287.
[11]  Balbus, S. and Terquem, C. (2001) Linear Analysis of the Hall Effect in Protostellar Disks. Astrophysical Journal, 552, 235-247.
https://doi.org/10.1086/320452
[12]  Homann, H. and Grauer, R. (2005) Bifurcation Analysis of Magnetic Reconnection in Hall-MHD Systems. Physica D, 208, 59-72.
https://doi.org/10.1016/j.physd.2005.06.003
[13]  Shalybkov, D.A. and Urpin, V.A. (1997) The Hall Effect and the Decay of Magneticfields. Astronomy & Astrophysics, 321, 685-690.
[14]  Fan, J., Alsaedi, A., Hayat, T., Nakamurad, G. and Zhou, Y. (2015) On Strong Solutions to the Compressible Hall-Magnetohydrodynamic System. Nonlinear Analysis: Real World Applications, 22, 423-434.
https://doi.org/10.1016/j.nonrwa.2014.10.003
[15]  Gao, J. and Yao, Z. (2017) Global Existence and Optimal Decay Rates of Solutions for Compressible Hall-MHD Equations. Discrete and Continuous Dynamical Systems, 36, 3077-3106.
[16]  Xu, F., Zhang, X., Wu, Y. and Liu, L. (2016) Global Existence and Temporal Decay for the 3D Compressible Hall-Magnetohydrodynamic System. Journal of Mathematical Analysis and Applications, 438, 285-310.
https://doi.org/10.1016/j.jmaa.2016.02.007
[17]  Xu, F., Chi, M., Liu, L. and Wu, Y. (2018) Existence, Uniqueness and Optimal Decay Rates for the 3D Compressible Hall-Magnetohydrodynamic System. arXiv:1806.02492
[18]  Chae, D., Degond, P. and Liu, J.G. (2014) Well-Posedness for Hall-Magnetohydrodynamics. Annales de l’Institut Henri Poincaré C, Analyse non Linéaire, 31, 555-565.
https://doi.org/10.1016/j.anihpc.2013.04.006
[19]  Chae, D. and Lee, J. (2014) On the Blow-Up Criterion and Small Data Global Existence for the Hallmagnetohydrodynamics. Journal of Differential Equations, 256, 3835-3858.
https://doi.org/10.1016/j.jde.2014.03.003
[20]  Chae, D. and Schonbek, M. (2013) On the Temporal Decay for the Hall-Magnetohydrodynamic Equations. Journal of Differential Equations, 255, 3971-3982.
https://doi.org/10.1016/j.jde.2013.07.059
[21]  Fan, J., Alsaedi, A., Fukumoto, Y., Hayat, T. and Zhou, Y. (2015) A Regularity Criterion for the Density-Dependent Hall-Magnetohydrodynamics. Zeitschrift für Analysis und ihre Anwendungen, 34, 277-284.
https://doi.org/10.4171/ZAA/1539
[22]  Fan, J., Jia, X., Nakamura, G. and Zhou, Y. (2015) On Well-Posedness and Blow up Criteria for the Magnetohydrodynamics with the Hall and Ion-Slip Effects. Zeitschrift für Angewandte Mathematik und Physik, 66, 1695-1706.
https://doi.org/10.1007/s00033-015-0499-9
[23]  Fan, J. and Ozawa, T. (2014) Regularity Criteria for the Density-Dependent Hallmagnetohydrodynamics. Applied Mathematics Letters, 36, 14-18.
https://doi.org/10.1016/j.aml.2014.04.010
[24]  Wan, R. and Zhou, Y. (2015) On Global Existence, Energy Decay and Blow-Up Criteria for the Hall-MHD System. Journal of Differential Equations, 259, 5982-6008.
https://doi.org/10.1016/j.jde.2015.07.013
[25]  Zhao, X. and Zhu, M. (2018) Global Well-Posedness and Asymptotic Behavior of Solutions for the Three-Dimensional MHD Equations with Hall and Ion-Slip Effects. Zeitschrift für Angewandte Mathematik und Physik, 69, 22.
https://doi.org/10.1007/s00033-018-0907-z
[26]  Fan, J., Li, F. and Nakamura, G. (2014) Regularity Criteria for the Incompressible Hallmagnetohydrodynamic Equations. Nonlinear Analysis, 109, 173-179.
https://doi.org/10.1016/j.na.2014.07.003
[27]  Duan, R.J., Liu, H.X., Ukai, S.J. and Yang, T. (2007) Optimal Lp-Lq Convergence Rates for the Compressible Navier-Stokes Equations with Potential Force. Journal of Differential Equations, 238, 220-233.
https://doi.org/10.1016/j.jde.2007.03.008
[28]  Guo, Y. and Wang, Y.J. (2012) Decay of Dissipative Equations and Negative Sobolev Spaces. Communications in Partial Differential Equations, 37, 2165-2208.
https://doi.org/10.1080/03605302.2012.696296
[29]  Li, H., Matsumura, A. and Zhang, G. (2010) Optimal Decay Rate of the Compressible Navier-Stokes-Poisson System in R3. Archive for Rational Mechanics and Analysis, 196, 681-713.
https://doi.org/10.1007/s00205-009-0255-4
[30]  Liu, T.P. and Wang, W.K. (1998) The Pointwise Estimates of Diffusion Waves for the Navier-Stokes Equations in Odd Multi-Dimensions. Communications in Mathematical Physics, 196, 145-173.
https://doi.org/10.1007/s002200050418
[31]  Matsumura, A. and Nishida, T. (1983) Initial-Boundary Value Problems for the Equations of Motion of Compressible Viscous and Heat-Conductive Fluids. Communications in Mathematical Physics, 89, 445-464.
https://doi.org/10.1007/BF01214738
[32]  Tan, Z. and Wang, H. (2013) Optimal Decay Rates of the Compressible Magnetohydrodynamic Equations. Nonlinear Analysis: Real World Applications, 14, 188-201.
https://doi.org/10.1016/j.nonrwa.2012.05.012
[33]  Ukai, S., Yang, T. and Zhao, H.J. (2006) Convergence Rate for the Compressible Navier-Stokes Equations with External Force. Journal of Hyperbolic Differential Equations, 3, 561-574.
https://doi.org/10.1142/S0219891606000902
[34]  Wang, Y.J. (2012) Decay of the Navier-Stokes-Poisson Equations. Journal of Differential Equations, 253, 273-297.
https://doi.org/10.1016/j.jde.2012.03.006
[35]  Xiang, Z. (2016) On the Cauchy Problem for the Compressible Hall-Magneto-Hydrodynamics Equations. Journal of Evolution Equations, 17, 1-31.
[36]  Wang, Y. and Tan, Z. (2011) Optimal Decay Rates for the Compressible Fluid Models of Korteweg Type. Journal of Mathematical Analysis and Applications, 379, 256-271.
https://doi.org/10.1016/j.jmaa.2011.01.006
[37]  Stein, E.M. (1970) Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton.

Full-Text

comments powered by Disqus