All Title Author
Keywords Abstract

The Carbon Sinks and Mitigation Potential of Deodar (Cedrus deodara) Forest Ecosystem at Different Altitude in Kumrat Valley, Pakistan

DOI: 10.4236/ojf.2018.84034, PP. 553-566

Keywords: Deodar Forest, Elevation, Carbon Sinks, Mitigation Potential

Full-Text   Cite this paper   Add to My Lib


Forest carbon monitoring and reporting are critical for informing global climate change assessment. The regional estimates of forest carbon attached greater attention, to assess the role of forest in carbon mitigation. Here using field inventory, we examined the carbon sink and mitigation potential of monospecific Deodar forest in the Kumrat valley, of Hindu Kush Himalaya, Region of Pakistan, at a different elevation. The elevation of monospecific Deodar forest ranges from 2300 to 2700 m (a.s.l). We divided the forest into three elevation classes (that is 2300 - 2400 m (EI) 2400 - 2500 m (EII) and 2500 - 2700 m (EIII) a.s.l respectively). In each elevation class, we laid out 09 sample plots (33*33 m2) for measuring carbon values in living tree biomass (LT), soil (SC), litter, dead wood, cone (LDWC) and understory vegetation (USV). Our results showed that the carbon density at EI was 432.37 ± 277.96 Mg·C-1, while the carbon density at EII and EIII was 668.35 ± 323.94 and 1016.79 ± 542.99 Mg·C-1 respectively. Our finding revealed that the carbon mitigation potential of the forest increases with increasing elevation. Among the different elevation classes, EIII stored significantly higher carbon due to the dominance of mature, old age, larger trees, and the minimum anthropogenic disturbance, whereas EI stored statistically lower carbon because of maximum anthropogenic disturbance, which resulted in the removal of mature and over-mature trees. Furthermore, our correlation analysis between tree height and carbon stock and basal area and LT carbon, underlines that the basal area is the stronger predictor of LT carbon estimation than height. Overall our results highlight that deodar forest stored 716.94 ± 462.06 Mg?C·ha-1. However, the rehabilitation, preservation and sustainable management of disturb forest located at a lower elevation could considerably improve carbon mitigation potential.


[1]  Adnan, A., Mirza, S. N., & Nizami, S. M. (2014). Assessment of Biomass and Carbon Stocks in Coniferous Forest of Dir Kohistan, KPK. Pakistan Journal of Agricultural Sciences, 51, 345-350.
[2]  Adnan, A., Nizami, S. M., Marwat, K. B., & Muhammad, J. (2015). Annual Accumulation of Carbon in Coniferous Forest of Dir Kohistan: An Inventory Based Estimate. Pakistan Journal of Botany, 47, 115-118.
[3]  Ahmad, A., & Nizami, S. M. (2015). Carbon Stocks of Different Land Uses in the Kumrat Valley, Hindu Kush Region of Pakistan. Journal of Forest Research, 26, 57-64.
[4]  Ahmad, A., Liu, Q. J., Nizami, S. M., Mannan, A., & Saeed, S. (2018). Carbon Emission from Deforestation, Forest Degradation and Wood Harvest in the Temperate Region of Hindukush Himalaya, Pakistan between 1994 and 2016. Land Use Policy, 1, 781-790.
[5]  Ardö, J., & Olsson, L. (2004). Soil Carbon Sequestration in Traditional Farming in Sudanese Dry Lands. Environmental Management, 33, 318-329.
[6]  Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobel, D. B., Delire, C., & Mirin, A. (2007). Combined Climate and Carbon-Cycle Effects of Largescale Deforestation. Proceedings of the National Academy of Sciences USA, 104, 6550-6555.
[7]  Barbati, A., Corona, P., & Marchetti, M. (2007). A Forest Typology for Monitoring Sustainable Forest Management: The Case of European Forest Types. Plant Biosystems, 1, 93-103.
[8]  Batjes, N. H. (1996). Total Carbon and Nitrogen in the Soils of the World. European Journal of Soil Science, 47, 151-163.
[9]  Brown, S. L., Schrooder, P., & Kern, J. S. (1999). Spatial Distribution of Biomass in Forests of the Eastern USA. Forest Ecology and Management, 123, 81-90.
[10]  Calfapietra, C., Barbati, A., Perugini, L., Ferrari, B., Guidolotti, G., Quatrini, A., & Corona, P. (2015). Carbon Stocks and Potential Carbon Sequestration of Different Forest Ecosystems under Climate Change and Various Management Regimes in Italy. Ecosystem Health and Sustainability, 1, 25.
[11]  Champion, H. G., Seth, S. K., & Khattak, G. M. (1963). Manual of Silviculture for Pakistan. Peshawar: Pakistan Forest Institute.
[12]  Esser, G. (1984). The Significance of Biospheric Carbon Pools and Fluxes for the Atmospheric CO2: A Proposal Mode Structure. In: H. Leith, R. Fantechi, & H. Schnitzler (Eds.), Interactions between Climate and Biosphere, Progress in Biometerology (pp. 253-294). Lisse: Swets and Zeitlinger BV.
[13]  Fang, J. Y., Chen, A. P., Zhao, S. Q., & Ci, L. J. (2002). Calculating Forest Biomass Changes in China—Response. Science, 296, 1359.
[14]  FAO (2010). Managing Forests for Climate Change.
[15]  Fredeen, A. L., Bois, C. H., Janzen, D. T., & Sanborn, P. T. (2005). Comparison of Coniferous Forest Carbon Stocks between Old-Growth and Young Second-Growth Forests on Two Soil Types in Central British Columbia, Canada. Canadian Journal of Forest Research, 35, 1411-1421.
[16]  Gaudinski, J. B., Trumbore, S. E., Davidson, E. A., & Zheng, S. (2000). Soil Carbon Cycling in a Temperate Forest: Radio Carbon Based Estimates of Residence Times, Sequestration Rates and Partitioning of Fluxes. Biogeochemistry, 51, 33-69.
[17]  Geoff Craggs, J. P. (2016). Strategic Analysis Paper the Role of Old-Growth Forests in Carbon Sequestration. Future Directions International. Independent Strategic Analysis of Australi’s Global Interest.
[18]  Gupta, L. M. K., & Sharma, S. D. (2011). Sequestrated Carbon: Organic Carbon Pool in the Soils under Different Forest Covers and Land Uses in Garhwal Himalayan Region of India. International Journal of Agriculture and Forestry, 1, 14-20.
[19]  Häme, T., Salli, A., & Lahti, K. (1992). Estimation of Carbon Storage in Boreal Forests Using Remote Sensing Data. In M. Kanninen, & P. Anttila (Eds.), Pilot Study. The Finnish Research Program on Climate Change, Progress Report (pp. 250-255). Helsinki: Academy of Finland.
[20]  Haripriya, G. S. (2000). Estimates of Biomass in Indian Forests. Biomass and Bioenergy, 19, 245-258.
[21]  Houghton, R. A., & Hackler, J. L. (1995). Continental Scale Estimate of the Biotic Carbon Flux from Land Cover Change 1850-1990. ORNL/CDIAC-79, NDP-050. Oak Ridge, Tennessee: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy.
[22]  IPCC (2003). Good Practice Guidance for Land Use, Land Use Change and Forestry. Hayama: Institute for Global Environmental Strategies.
[23]  IPCC (2006). Guidelines for National Greenhouse Gas Inventories. In S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.), Volume 4, Agriculture, Forestry and Other Land Use (AFLOLU). Hayama: Institute for Global Environmental Strategies.
[24]  IPCC (2013). Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
[25]  Johnson, M. G., & Kern, J. S. (2002). Quantifying the Organic Carbon Held in Forested Soil of United State and Puerto Rico. In J. M. Kimble, L. S. Heath, R. A. Birdsey, & R. Lal (Eds.), The Potential of US Forest Soil to Sequester Carbon and Mitigate the Greenhouse Effect. Boca Raton, FL: Lewis Publisher.
[26]  Khan, N., Ahmed, M., & Shaukat, S. S. (2013). Climatic Signal in Tree-Rings Chronologies of Cedrus deodara Rom Chitral Hindukush Range of Pakistan. Geochronometer, 40, 195-207.
[27]  Kramer, R. C., Ramler, I., Sharp, R., Haddad, N. M., Gerber, J. S., West, P. C. et al. (2015). Degradation in Carbon Stocks near Tropical Forest Edges. Nature Communications.
[28]  Law, B. E., Thornton, P. E., Irvine, J. A., & Vantuyl, P. M. (2001). Carbon Storage and Fluxes Forests as Global Carbon Sinks. Nature, 455, 213-215.
[29]  Le Quere, C., Raupach, R. M. R., Canadell, J. G., & Marland, G. (2009). Trends in the Sources and Sinks of Carbon Dioxide. Nature Geoscience, 2, 831-836.
[30]  Luo, Y., Wu, L., Andrews, J. A., White, L., Matamala, R., Schafer, V. R., & Schlesinger, W. H. (2001). Elevated CO2 Differentiate Secosystem Carbon Processes: Deconvolution Analysis of Duke Forest FACE Data. Ecological Monographs, 71, 357-376.
[31]  Malhi, Y., Baker, T. R., Phillips, O. L., Almeida, S., Alvarez, E., Arroyo, L., Chave, J., Czimcziki, C. I., Fiore, A. D., Higuchi, N., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Montoya, L. M. M., & Lloyd, J. (2004). The Above Ground Coarse Wood Productivity of 104 Neotropical Forest Plots. Global Change Biology, 10, 563-591.
[32]  Manan, A., Feng, Z., Ahmad, A., Liu, J., Saeed, A., & Mukete, B. (2018). Carbon Dynamic Shifts with Land Use Change in Margallah Hills National Park, Islamabad (Pakistan) from 1990 to 2017. Applied Ecology and Environmental Research, 16, 3197-3214.
[33]  Moinuddin, A., Nazim, K., Siddiqui, M. F., Wahab, M., Khan, N., Khan, M. U., & Hussain, S. S. (2010). Community Description of Deodar Forests from Himalayan Range of Pakistan. Pakistan Journal of Botany, 42, 3091-3102.
[34]  Moinuddin, A., Shaukat, S. S., & Siddiqui, M. F. (2011). A Multivariate Analysis of the Vegetation of Cedrus deodara Forests in Hindu Kush and Himalayan Ranges of Pakistan: Evaluating the Structure and Dynamics. Turkish Journal of Botany, 35, 419-438.
[35]  Moinuddin, A., Wahab, M., Khan, N., Siddiqui, M. F., Khan, M. U., & Hussain, S. T. (2009). Age and Growth Rates of Some Gymnosperms of Pakistan: A Dendrochronological Approach. Pakistan Journal of Botany, 41, 849-860.
[36]  Nizami, S. M. (2012). The Inventory of the Carbon Stocks in Sub Tropical Forest of Pakistan for Reporting under Kyoto Protocol. Journal of Forest Research, 23, 377-384.
[37]  Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., & Canadell, J. G. (2011). A Large and Persistent Carbon Sink in the World’s Forests. Science, 333, 988-993.
[38]  Pearson, T. R., Brown, S. L., & Birdsey, R. A. (2008). Measurement Guidelines for The Sequestration of Forest Carbon. General Technical Report, USAD Forest Service.
[39]  Philip, M. S. (1994). Measuring Trees and Forests (2nd ed.). Wallingford, CT: CAB International.
[40]  Philip, M. S. (1994). Measuring Trees and Forests (2nd ed.). Wallingford: CAB International.
[41]  Pregitzer, K. S., & Euskirchen, E. S. (2004). Carbon Cycling and Storage in World Forests: Biome Patterns Related to Forest Age. Global Change Biology, 10, 2052-2077.
[42]  Prentice, I. C. et al. (2001). The Carbon Cycle and Atmospheric Carbon Dioxide. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noquer, P. J. van der Linden, X. Dai, K. Maskell, & C. A. Johnson (Eds.), Climate Change 2001: The Scientific Basis (pp. 183-237). Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge and New York, NY: Cambridge University Press.
[43]  Sajjad, S., Adnan, A., & Ashraf, I. (2016). The Bela Forest Ecosystem of District Jhelum, a Potential Carbon Sink. Pakistan Journal of Botany, 48, 121-129.
[44]  Sharma, C. M., Gairola, S., Baduni, N. P., Ghildiyal, S., & Sarvesh, K. S. (2011). Variation in Carbon Stocks on Different Slope Aspects in Seven Major Types of Temperate Region of Garhwal Himalaya. Indian Journal of Biosciences, 36, 701-708.
[45]  Sharma, P., & Rai, S. C. (2007). Carbon Sequestration with Land-Use Cover Change in a Himalayan Watershed. Geoderma, 139, 371-378.
[46]  Sheikh, M. I. (1993). Trees of Pakistan. Peshawar: Pakistan Forest Institute
[47]  Smithwick, E. A. H., Harmon, M. E., Remillard, S. M., Acker, S. A., & Franklin, J. F. (2002). Potential Upper Bounds of Carbon Stores in Forests of the Pacific Northwest. Ecological Applications, 12, 1303-1317.[1303:PUBOCS]2.0.CO;2
[48]  Somogyi, Z., Teobaldelli, M., Federici, S., Matteucci, G., Pagliari, V., & Grassi, G. (2008). Allometric Biomass and Carbon Factors Database. Journal of Biogeosciences and Forestry, 1, 107-113.
[49]  Teobaldelli, M., Somogyi, Z., Migliavacca, M., & Usoltsev, V. A. (2009). Generalized Functions of Biomass Expansion Factors for Conifers and Broadleaved by Stand Age, Growing Stock and Site Index. Forest Ecology and Management, 257, 1004-1010.
[50]  Tolnnay, D. (2011). Total Carbon Stocks and Carbon Accumulation in Living Tree Biomass in Forest Ecosystem of Turkey. Turkish Journal of Agriculture and Forestry, 35, 256-279.
[51]  Tolnnay, D. (2011). Total Carbon Stocks and Carbon Accumulation in Living Tree Biomass in Forest Ecosystem of Turkey. Turkish Journal of Agriculture and Forestry, 35, 256-279.
[52]  Walkley, A., & Black, J. A. (1934). An Examination of the Degtjaref Method for Determining Soil Organic Matter and Proposed Modification of the Chromic Titration Method. Soil Science, 37, 29-38.
[53]  Wani, A. A., Joshi, K. P., Singh, O., & Pandey, R. (2012). Carbon Sequestration Potential of Indian Forestry Land. Nature and Science, 10, 78-85.
[54]  Wani, A. A., Joshi, P., Singh, O., & Bhat, J. (2014). Estimating Soil Carbon Storage and Mitigation under Temperate Coniferous Forests in the Southern Region of Kashmir Himalayas. Mitigation and Adaptation Strategies for Global Change, 19, 1179-1194.
[55]  Wani, A. M., Joshi, P. K., & Singh, O. (2015). Estimating Biomass and Carbon Mitigation of Temperate Coniferous Forests Using Spectral Modeling and Field Inventory Data. Ecological Informatics, 25, 63-70.
[56]  Watson, R. T. (2000). Land Use, Land-Use Change, and Forestry: A Special Report of the IPCC. Cambridge: Cambridge University Press.
[57]  Zhang, Y., Fengxue, G., Shirong, L., Yanchun, L., & Chao, L. (2012). Variation of Carbon Stock with Forest Types Subalpine Region of South Western China. Forest Ecology and Management, 30, 88-95.
[58]  Zhang, Y., Gu, F., Liu, S., Liu, Y., & Li, C. (2013). Variations of Carbon Stock with Forest Types in Subalpine Region of Southwestern China. Forest Ecology and Management, 300, 88-95.


comments powered by Disqus