Electrodeposition
of CZTS thin films on ZnS was carried using a 2-electrode method to fabricate
superstrate structure solar cells. A comprehensive study was performed on the
effects of trisodium citrate on the CZTS electrolyte bath. In the present
investigation, it is demonstrated that using a CZTS electrolyte with a
concentration of 0.2 M trisodium citrate yields CZTS thin films with an
electronic bandgap of 1.52 eV, a p-type nature, and good uniformity, which are
all results desired for the fabrication of thin film solar cells.
Characterization was performed using UV-Vi-IR optical absorption, SEM imaging,
Raman spectrometry, and photoelectrochemical cells conducted for electronic
bandgap, morphology, chemical composition, and semiconductor conductivity,
respectively.
Ansari, M.Z. and Khare, N. (2014) Structural and Optical Properties of CZTS Thin Films Deposited by Ultrasonically Assisted Chemical Vapour Deposition. Journal of Physics D: Applied Physics, 47, Article No. 18.
https://doi.org/10.1088/0022-3727/47/18/185101
Shi, C.W., Shi, G.Y., Chen, Z., Yang, P.F. and Yao, M. (2012) Deposition of Cu2ZnSnS4 Thin Films by Vacuum Thermal Evaporation from Single Quaternary Compound Source. Materials Letters, 73, 89-91.
https://www.sciencedirect.com/science/article/pii/S0167577X12000389
https://doi.org/10.1016/j.matlet.2012.01.018
Moholkar, A., Shinde, S., Babar, A.R., Sim, K., Kwon, Y., Rajpure, K., et al. (2011) Development of CZTS Thin Films Solar Cells by Pulsed Laser Deposition: Influence of Pulse Repetition Rate. Solar Energy, 85, 1354-1363.
https://doi.org/10.1016/j.solener.2011.03.017
Ramasamy, K., Malik, A. and O’Brien, P. (2011) The Chemical Vapor Deposition of Cu2ZnSnS4 Thin Films. Chemical Science (Royal Society of Chemistry), 2, 1170-1172.
Diwate, K., Mohite, K., Shinde, M., Rondiya, S., Pawbake, A., Date, A., et al. (2017) Synthesis and Characterization of Chemical Spray Pyrolysed CZTS Thin Films for Solar Cell Applications. Energy Procedia, 110, 180-187.
https://doi.org/10.1016/j.egypro.2017.03.125
Tao, J., Chen, L., Cao, H., Zhang, C., Liu, J., Zhang, Y., et al. (2016) Co-Electrodeposited Cu2ZnSnS4 Thin-Film Solar Cells with over 7% Efficiency Fabricated via Finetuning of the Zn Content in Absorber Layers. Journal of Materials Chemestry A, 4, 3798-3805.
Rana, T.R., Shinde, N.M. and Kim, J. (2016) Novel Chemical Route for Chemical Bath Deposition of Cu2ZnSnS4 (CZTS) Thin Films with Stacked Precursor Thin Films. Materials Letters, 162, 40-43.
https://www.sciencedirect.com/science/article/pii/S0167577X15306133
https://doi.org/10.1016/j.matlet.2015.09.100
Toyama, T., Konishi, T., Seo, Y., Tsuji, R., Terai, K., Nakashima, Y., et al. (2014) Annealing-Induced Optical-Bandgap Widening of Cu2ZnSnS4 Thin Films with Observation of Simultaneous Increase in Local-Structure Ordering. Japanese Journal of Applied Physics, 54, Article ID: 015503.
Pawar, B.S., Pawar, S.M., Shin, S.W., Choi, D.S., Park, C., Kolekar, S. and Kim, J. (2010) Effect of Complexing Agent on the Properties of Electrochemically Deposited Cu2ZnSnS4 (CZTS) Thin Films. Applied Surface Science, 257, 1786-1791.
https://doi.org/10.1016/j.apsusc.2010.09.016
Dharmadasa, I.M., Madugu, M.L., Olusola, O.I., Echendu, O.K., Fauzi, F., Diso, D.G., Weerasinghe, A.R., et al. (2017) Electroplating of CdTe Thin Films from Cadmium Sulphate Precursor and Comparison of Layers Grown by 3-Electrode and 2-Electrode Systems. Coatings, 7, 17. https://doi.org/10.3390/coatings7020017
Mkawi, M., Ibrahim, K., Ali, A.S., Farrukh, M.A., Mohamed, A.S. and Allam, N.K. (2014) Effect of Complexing Agents on the Electrodeposition of Cu-Zn-Sn Metal Precursors and Corresponding Cu2ZnSnS4-Based Solar Cells. Journal of Electroanalytical Chemistry, 735, 129-135. https://doi.org/10.1016/j.jelechem.2014.10.021
Suarez, H., Correa, J.M., Cruz, S.D., Otalora, C.A., Hurtado, M. and Gordillo, G. (2013) Synthesis and Study of Properties of CZTS Thin Films Grown Using a Novel Solution-Based Chemical Route. 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, 16-21 June 2013, 2585-2589.
https://doi.org/10.1109/PVSC.2013.6745002