All Title Author
Keywords Abstract


Design and Performance of Photovoltaic Water Pumping Systems: Comprehensive Review towards a Renewable Strategy for Mozambique

DOI: 10.4236/jpee.2018.67003, PP. 32-63

Keywords: Photovoltaic Water Pumping Systems, Energy resource

Full-Text   Cite this paper   Add to My Lib

Abstract:

The use of solar photovoltaic (PV) technology for water pumping systems (WPS) has been one of the most popular forms of solar energy application in recent decades in remote and desert areas, as well as in some urban areas. In this article, an advanced literature review on the design and performance of solar technology for water pumping is presented, exploring also the best perspective of transition for the developing countries energy needs. Additionally, this paper intends to analyze the Mozambique’s perspective on renewable energy technologies setting the Mozambican scenario regarding photovoltaic water pumping systems (PVWPS) technology with the aim to identifying the main knowledge of PVWPS design and research gap. The results show that the most commonly used configuration of PVWPS technology is direct coupling systems without battery storage. These systems are simple and reliable, mainly used in small-scale pumping for small irrigations and domestic use. The mainly variables that influence the performance of PVWPS are: total dynamic head, quantity of fluid extracted, variation of solar radiation level, PV and motor pump technology. Yet, the efficiency of the PV and overall system does not exceed 10% and 5%, respectively. Looking at the designing, mathematical models, software-assisted is being predominant. Yet, as research gap, it is possible to understand from different authors that the dynamic nature of the end-use of PVWPS is not explored on methodology design of PVWPS, and the techno-economic optimum system configuration is not always the one that gives the highest annual system efficiency. For the Mozambican’s context, PVWPS for irrigation has been expanding slowly but has gained expression since 2013. In turn, static models based on software of pump manufacturers for PVWPS design are the most widely used in Mozam-bique. In Mozambique, PVWPS match the perspective of different researchers regarding the availability of solar resource, boreholes and amount of water required for irrigation. The adoption of PVWPS is a means of increasing the sustainability of the rural communities.

References

[1]  Cabraal, R.A., Kennedy, T.G. and Hoelscher, J. (1991) Photovoltaic-Powered Water Pumping in Mali. European Photovoltaic Solar Energy Conference, Brussels and Luxembourg, 1158-1161.
https://doi.org/10.1007/978-94-011-3622-8_296
[2]  Funae (2009) Fundo de Energia, Plano Estratégico 2010 -2014. Maputo.
[3]  Van Koppen, B., Namara, R. and Safilios, R.C. (2005) Reducing Poverty through Investments in Agricultural Water Management. Part 1. Poverty and Gender Issues. Part 2. Synthesis of Sub-Saharan Africa Case Study Reports. International Water Management Institute, Colombo, 71 p.
[4]  Campana, P.E., Li, H. and Yan, J. (2013) Dynamic Modelling of a PV Pumping System with Special Consideration on Water Demand. Applied Energy, 112, 635-645.
[5]  UNESCO (2012) Ano Internacional da Energia Sustentável para Todos, Escolas de Associacao da UNESCO.
[6]  Chaurey, A., Sadaphal, P.M. and Yaqi, D. (1993) Experiences with SPV Water Pumping Systems for Rural Applications in India. Renewable Energy, 3, 961-964.
https://doi.org/10.1016/0960-1481(93)90058-O
[7]  Zaki, A.M. and Eskander, M.N. (1996) Matching of Photovolatic Motor-Pump Systems for Maximum Efficiency Operation. Renewable Energy, 7, 279-288.
https://doi.org/10.1016/0960-1481(95)00133-6
[8]  Fedrizzi, M.C., Ribeiro, F.S. and Zilles, R. (2009) Lessons from Field Experiences with Photovoltaic Pumping Systems in Traditional Communities. Energy for Sustainable Development, 13, 64-70.
[9]  Andrade, M.G.D. (2013) Efeito de um sistema de bombeamento de água fotovoltaico na operacao de um microaspersor. Master Thesis, Parana, Brazil.
[10]  Aler (2016) Energias Renováveis em mocambique—Relatório do Ponto de Situacao. ALER—Associacao Lusófona de Energias Renováveis.
[11]  United States Department of Agriculture (2010) Design of Small Photovoltaic (PV) Solar-Powered Water Pump Systems. Oregon.
[12]  Pytlinsk, J.T. (1978) Review Paper Solar Energy Installations for Pumping Irrigation Water. Solar Energy, 21, 255-262.
https://doi.org/10.1016/0038-092X(78)90001-4
[13]  Kou, Q., Klein, S.A. and Beckman, W.A. (1998) A Method for Estimating the Long-Term Performance of Direct-Coupled PV Pumping Systems. Solar Energy, 64, 33-40.
https://doi.org/10.1016/S0038-092X(98)00049-8
[14]  Kapadia, K. (2004) Productive Uses of Renewable Energy: A Review of Four Bank—GEF Projects. 1-33.
[15]  Katan, R.E., Agelids, V.G. and Nayar, C.V. (1996) Performance Analysis of a Solar Water Pumping System. Proceedings of the 1996 IEEE International Conference on Power Electronics, Drives, and Energy Systems for Industrial Growth (PEDES), New Delhi, 8-11 January 1996, 81-87.
[16]  Protogeropoulos, C. and Pearce, S. (2000) Laboratory Evaluation and System Sizing Charts for a “Second Generation” Direct PV-Powered, Low Cost Submersible Solar Pump. Solar Energy, 68, 453-474.
https://doi.org/10.1016/S0038-092X(00)00005-0
[17]  Chandel, S.S., Naik, M.N. and Chandel, R. (2015) Review of Solar Photovoltaic Water Pumping System Technology for Irrigation and Community Drinking Water Supplies. Renewable and Sustainable Energy Review, 49, 1084-1099.
https://doi.org/10.1016/j.rser.2015.04.083
[18]  LORENTZ (2017) System Overview.
https://pt.scribd.com/document/340502287/Lorentz-Ps2-600-Cs-f
[19]  EPIA Photovoltaics and Commission of the European Communities—Directorate General for Energy (2010) Summary Report.
[20]  Valer, L.R., Fedrizzi, M.C., Melendez, T.A. and Zilles, R. (2010) Sistemas Fotovoltaicos de Bombeamento para Uso na Agricultura. Universidade de Sao Paulo, AGRENER, 1-11.
[21]  Halcrow, W., et al. (1984) Handbook on Solar Water Pumping: Intermediate Technology Power. UNDP Project GLO/80/003 Executed for the World Bank, Swindon.
[22]  Anhalt, J. (1995) Introducao de sistemas de bombas fotovoltaicas—Relatório final sobre a realizacao de um projeto. GTZ, Fortaleza.
[23]  RSP-Regional Solar Programme (1999) Lessons and Perspectives, European Commission (DG VII). Foudation Energies pour le Monde, Bruxelas.
[24]  Narvarte, L. and Lorenzo, E. (2010) Sustainability of PV Water Pumping Programmes: 12-Years of Successful Experience. Progress in Photovoltaics: Research and Applications, 18, 291-298.
[25]  Narvarte, L., Poza, F. and Lorenzo, E. (2006) Specification and Testing of PV Pumps for a Moroccan Project. Progress in Photovoltaics: Research and Applications, 14, 733-741.
https://doi.org/10.1002/pip.701
[26]  Pinho, J.T. and Galdino, M.A. (2014) Manual de Engenharia para Sistemas Fotovoltaicos. CRESESB/CEPEL, Rio de Janei-ro.
[27]  Malbranche, P., Servant, J.M., Helm, P. and Haenel, A. (1994) Recent Developments in Photovoltaic Water Pumping Applications and Research in the Euro-pean Community. 476-481.
[28]  Barlow, R., McNelis, B. and Derrick, A. (1993) Solar Pumping.
[29]  Hasson, A.M., Al-Sagir, B.E. and Hussein, R. (1990) A Study of Solar Water Pumping Parameters for Baghdad Area. Energy and Environment, 1, 549-556.
https://doi.org/10.1016/B978-0-08-037539-7.50094-6
[30]  Chandel, S.S., Naika, M.N. and Chandel, R. (2017) Review of Performance Studies of direct Coupled Photovoltaic Water Pumping Systems and Case Study. Renewable and Sustainable Energy Reviews, 76, 163-175.
https://doi.org/10.1016/j.rser.2017.03.019
[31]  Pinho, J.T. and Galdino, M.A. (2014) Manual de Engenharia para Sistemas Fotovoltaicos. CRESESB/CEPEL, Rio de Janeiro, 1-530.
[32]  Kabore, F. (1994) PV Energy for a Sustained and Social Development in the Sahelian Region. 5th Edition, The Regional Solar Program, James and James, London.
[33]  Lorenzo, E. (1997) Photovoltaic Rural Electrification. Progress in Photovoltaics: Research and Applications, 5, 23-27.
https://doi.org/10.1002/(SICI)1099-159X(199701/02)5:1<3::AID-PIP158>3.0.CO;2-H
[34]  Melendez, T.A.F. (2009) Avaliacao de sistemas fotovoltaicos de bombeamento. Master thesis, Universidade de sao Paulo, Sao Paulo.
[35]  New Mexico State University’s (NMSU) Department of Engineering Technology (2014) A Solar Choice for Pumping Water in New Mexico for Livestock and Agriculture.
[36]  Fedrizzi, M.C. (2003) Sistemas Fotovoltáicos de abastecimento de água para uso comunitário: Licoes apreendidas e procedimentos para potencializar sua difusao. Doutorado Programa Interunidades de Pós Graduacao em Energia, Universidade de Sao Paulo.
[37]  Argaw, N. and Colorado, D. (2004) Renewable Energy Water Pumping Systems Handbook. NREL Technical Monitor, L. Flowers.
[38]  Posadillo, R. and Luque, R.L. (2008) Approaches for Developing a Sizing Method for Stand-Alone PV Systems with Variable Demand. Renewable Energy, 33, 1037-1048.
https://doi.org/10.1016/j.renene.2007.06.004
[39]  Hahn, A. (1998) Lessons Learned from the International Photovoltaic Pumping Program. 15th European Photovoltaic Solar Energy Conference, Vienna, 2941-2945.
[40]  GREENPRO (2004) Energia Fotovoltaica—Manual Sogre Tecnologias, Projectos e Instalacao, 1-368.
[41]  Empresa de Pesquisa Energética (2012) Análise da Insercao da Geracao Solar na Matriz Elétrica Brasileira. Ministério de Minas e Energia, Brasil, 1-64.
[42]  European Commission (2017) Photovoltaic Geographical Information System (PVGIS).
http://re.jrc.ec.europa.eu/pvgis/
[43]  Morales, L.R.V. (2011) A Utilizacao de Sistemas Fotovoltáicos de Bombeamento para Irrigacao em Pequenas Propriedades Rurais. Master Thesis, Universidade de Sao Paulo, Sao Paulo.
[44]  Comissión Europea DG XII (1996) Manual de energización rural mediante energia fotovoltaica.
[45]  Organizacióon de las Naciones Unidas para la Agricultura y la Alimentación (1977) Las necessidades de água de los cultivos. Caderno Técnico No. 24.
[46]  Argaw, N., Foster, R. and Ellis, A. (2017) Renewable Energy for Water Pumping Applications in Rural Villages.
http://www.osti.gov/bridge
[47]  Photovoltaic Systems Technology (2003) Universitat Kassel. Kassel, German.
[48]  Sandia National Laboratories (1991) Stand-Alone Photovoltaic System—A Handbook of Recommended Design Practices.
[49]  Odeh, I., Yohanis, Y.G. and Norton, B. (2006) Influence of Pumping Head, Insolation and PV Array Size on PV Water Pumping System Performance. Solar Energy, 80, 51-64.
https://doi.org/10.1016/j.solener.2005.07.009
[50]  de Andrade, E.H.P., Bizerra, L.D.S. and Antunes, F.L.M. (2008) Sistema de Bombeamento de água com Energia Solar Fotovoltaica Utilizando Motor de Inducao Trifásica.
https://pt.scribd.com/document/341282706/Sistema-de-Bombeamento-de-Agua-Com-Energia-Solar-Fotovoltaica-Utilizando-Motor-de-Inducao-Trifasico
[51]  Hamza, A.A. and Taha, A.Z. (1995) Performance of Submersible PV Solar Pumping Systems under Conditions in the Sudan. Renewable Energy, 6, 491-495.
https://doi.org/10.1016/0960-1481(95)00049-P
[52]  Setiwan, A., Purwanto, D.H., Amuji, D.S. and Urul, H.N. (2014) Development of a Solar Water Pumping System in Karsts Rural Area Tepus, Gunungkidul through Student Community Services. Energy Procedia, 47, 7-14.
https://doi.org/10.1016/j.egypro.2014.01.190
[53]  Abdolzadeh, M. and Ameri, M. (2009) Improving the Effectiveness of a Photovoltaic Water Pumping System by Spraying Water over the Front of Photovoltaic Cells. Renewable Energy, 34, 91-96.
https://doi.org/10.1016/j.renene.2008.03.024
[54]  Nogueira, C.E.C., Bedin, J., Niedzialkoski, R.K., Souza, S.N.M. and Neves, J.C.M. (2015) Performance of Monocrystalline and Polycrystalline Solar Panels in a Water Pumping System in Brazil. Renewable and Sustainable Energy Reviews, 51, 1610-1616.
https://doi.org/10.1016/j.rser.2015.07.082
[55]  Hamidat, A., Benyoucef, P. and Hartani, T. (2003) Small-Scale Irrigation with Photovoltaic Water Pumping System in Sahara Regions. Renewable Energy, 28, 1081-1096.
https://doi.org/10.1016/S0960-1481(02)00058-7
[56]  Ghoneim, A.A. (2006) Design Optimization of Photovoltaic Powered Water Pumping Systems. Energy Conversion and Management, 47, 1449-1463.
https://doi.org/10.1016/j.enconman.2005.08.015
[57]  Nogueira, C.U. (2009) Utilizacao de Sistema Solar e Eólico no Bombeamento de água para Uso na Irrigacao. Mestrado Master Thesis, Universidade Federal de Santa Maria.
[58]  Kolling, E.M., de Souza, S.N.M., Ricieri, R.P., Sampaio, S.C. and Dallacort, R. (2004) Análise Operacional de um Sistema Fotovoltáico de Bombeamento de água. Engenharia Agrícola, 24, 527-535.
https://doi.org/10.1590/S0100-69162004000300005
[59]  Benghanem, M., Daffallah, K.O., Alamri, S.N. and Joraid, A.A. (2014) Effect of Pumping Head on Solar Water Pumping System. Energy Conversion and Management, 77, 334-339.
https://doi.org/10.1016/j.enconman.2013.09.043
[60]  Pande, P.C., Singh, A.K., Ansari, S., Vyas, S.K. and Dave, B.K. (2003) Design Development and Testing of a Solar PV Pump Based Drip System for Orchards. Renewable Energy, 28, 385-396.
[61]  Hamouda, C., Wagemann, H.G., Hanistch, R. and Siekmann, H.E. (1991) Cost Analysis of Photovoltaic Water Pumping Systems Used in Arid and Semi-Arid Zones in Algeria. In: Luque, A., Sala, G., Palz, W., Dos Santos, G. and Helm, P., Eds., 10th E.C. Photovoltaic Solar Energy Conference, Springer, Dordrecht, 1111-1114.
[62]  Koner, P.K., Joshi, J.C. and Chopra, K.L. (1991) A Photovoltaic Water Pumping Testing Facility. RERIC International Energy Journal, 13, 81-97.
[63]  N.E.Q.I. Instituto Nacional de Metrologia (2011) Tabela de consumo/Eficiência energética. Componentes fotovoltaicos.
[64]  Koner, P.K. (1993) A Review on the Diversity of Photovoltaic Water Pumping Systems. RERIC International Energy Journal, 15, 89-110.
[65]  Kolling, E.M. (2001) Análise de um sistema fotovoltaico de bombeamento de água. Dissertaao de Mestrado Master Thesis, Universidade Estadual do Oeste do Paraná.
[66]  International Energy Agency—Photovoltaic Power Systems Programme (IEA-PVPS) (2014) Annual Report 2014.
[67]  U.S. National Renewable Energy Lab (2017) A Policymaker’s Guide Feed-In Tarrif Policies Design.
http://www.nrel.gov/docs/fy10osti/44849.pdf
[68]  Fiaschi, D., Graniglia, R. and Manfrida, G. (2005) Improving the Effectiveness of Solar Pumping Systems by Using Modular Centrifugal Pumps with Variable Rotational Speed. Solar Energy, 79, 234-244.
https://doi.org/10.1016/j.solener.2004.11.005
[69]  Niedzialkoski, R.K. (2013) Desempenho de paineis solares mono e policristalinos em um sistema de bombeamento de água. Master Thesis, Universidade Estadual do Oeste do Paraná.
[70]  Fantidis, J.G., Bandekas, D.V., Potolias, C. and Vordos, N. (2013) Cost of PV Electricity—Case Study of Greece. Solar Energy, 91, 120-130.
https://doi.org/10.1016/j.solener.2013.02.001
[71]  Brankar, K., Pathaka, M.J.M. and Pearce, J.M. (2011) A Review of Solar Photovoltaic Levelized Cost of Electricity. Renewable and Sustainable Energy Reviews, 15, 4470-4482.
https://doi.org/10.1016/j.rser.2011.07.104
[72]  Sonresen, B., Hummelshoj, R.M. and Mikkelesen, S.E. (1989) Photovoltaic Pilot Project in India. Proceedings of the 9th ECPVSE Conference, 1054-1056.
[73]  Soni, M.S. and Gakkhar, N. (2013) Techno-Economic Parametric Assessment of Solar Power in India: A Survey. Renewable and Sustainable Energy Reviews, 40, 326-334.
https://doi.org/10.1016/j.rser.2014.07.175
[74]  Kandpal, T.C. and Garg, H.P. (2003) Financial Evaluation of Renewable Energy Technologies. Macmillan India Ltd., Delhi.
[75]  Hoppmann, J., Hoffmann, V., Schimidt, T.S. and Volland, J. (2014) The Economic Viability of Battery Storage for Residential Solar Photovoltaic Systems—A Review and a Simulation Model. Renewable and Sustainable Energy Reviews, 39, 1101-1118.
https://doi.org/10.1016/j.rser.2014.07.068
[76]  Lazou, A.A. and Papatsoris, A.D. (2000) The Economics of Photovoltaic Stand-Alone Residential Households: A Case Study for Various European and Mediterranean Locations. Solar Energy Materials & Solar Cells, 62, 411-427.
https://doi.org/10.1016/S0927-0248(00)00005-2
[77]  Ren, H., Gao, W. and Ruan, Y. (2009) Economic Optimization and Sensitivity Analysis of Photovoltaic System in Residential Buildings. Renewable Energy, 34, 883-889.
https://doi.org/10.1016/j.renene.2008.06.011
[78]  Argaw, N. (1993) External Impacts Evaluation: An Illustration to Energy Sources Evaluation for Water Pumping Technology. Prepared for the International Conference on Making Sense of Development, Tampere University of Technology, Tampere, Finland.
[79]  Rawat, R., Kaushik, S.C. and Lamba, R. (2016) A Review on Modeling, Design Methodology and Size Optimization of Photovoltaic Based Water Pumping, Standalone and Grid Connected System. Renewable and Sustainable Energy Reviews, 57, 1506-1519.
https://doi.org/10.1016/j.rser.2015.12.228
[80]  Gad, H.E. (2009) Performance Prediction of a Proposed Photovoltaic Water Pumping System at South Sinai, Egypt Climate Conditions. 13th International Water Technology Conference, Hurghada, Egypt, 739-752.
[81]  Senol, R. (2012) An Analysis of Solar Energy and Irrigation Systems in Turkey. Energy Policy, 47, 478-486.
https://doi.org/10.1016/j.enpol.2012.05.049
[82]  PVSYST (2017).
http://www.pvsyst.com/en/
[83]  HOMER (2017).
http://www.homerenergy.com/
[84]  RETScreen (2017).
http://www.nrcan.gc.ca/energy/software-tools/7465
[85]  SAM (2017).
https://sam.nrel.gov/
[86]  MATLAB (2017).
https://www.mathworks.com
[87]  TRANSYS (2017).
https://sel.me.wisc.edu/trnsys/
[88]  LabVIEW (2016).
http://www.ni.com/pt-pt/shop/labview/
[89]  Khatib, T., Mohamed, A. and Sopian, K. (2013) A Review of Photovoltaic Systems Size Optimization Techniques. Renewable and Sustainable Energy Reviews, 22, 454-465.
https://doi.org/10.1016/j.rser.2013.02.023
[90]  Hontoria, L., Aguilera, J. and Zufiria, P. (2005) A New Approach for Sizing Stand Alone Photovoltaic Systems Based in Neural Networks. Solar Energy, 78, 313-319.
https://doi.org/10.1016/j.solener.2004.08.018
[91]  Loxsom, F. and Durongkaveroj, P. (1994) Estimating the Performance of a Photovoltaic Pumping System. Solar Energy, 52, 215-219.
https://doi.org/10.1016/0038-092X(94)90071-X
[92]  Sinha, C.S. and Kandpal, T.C. (1991) Optimal Mix of Technologies for Rural India: The Irrigation Sector. International Journal of Energy Research, 15, 331-346.
https://doi.org/10.1002/er.4440150408
[93]  Correa, T.P., Seleme, S.I.J. and Silva, S.R. (2012) Efficiency Optimization in Stand-Alone Photovoltaic Pumping System. Renewable Energy, 41, 220-226.
https://doi.org/10.1016/j.renene.2011.10.024
[94]  Khiareddine, A., Salah, C.B. and Mimouni, M.F. (2015) Power Management of a Photovoltaic/Battery Pumping System in Agricultural Experiment Station. Solar Energy, 112, 319-338.
https://doi.org/10.1016/j.solener.2014.11.020
[95]  Rahrah, K., Rekioua, D., Rekioua, T. and Bacha, S. (2015) Photovoltaic Pumping System in Bejaia Climate with Battery Storage. International Journal of Hydrogen Energy, 40, 13665-13675.
https://doi.org/10.1016/j.ijhydene.2015.04.048
[96]  Hamidat, A. and Benyoucef, B. (2009) Systematic Procedures for Sizing Photovoltaic Pumping System, Using Water Tank Storage. Energy Policy, 37, 1489-1501.
https://doi.org/10.1016/j.enpol.2008.12.014
[97]  Sharma, V.K., Colangelo, A. and Spagna, G. (1995) Photovoltaic Technology: Basic Concepts, Sizing of a Stand Alone Photovoltaic System for Domestic Applications and Preliminary Economic Analysis. Energy Conversion and Management, 36, 161-174.
https://doi.org/10.1016/0196-8904(94)00065-8
[98]  Sidrach de Cardona, M. and Lopez, L.M. (1998) A Simple Model for Sizing Stand Alone Photovoltaic Sys-tems. Solar Energy Materials and Solar Cells, 55, 199-214.
https://doi.org/10.1016/S0927-0248(98)00093-2
[99]  Barra, L., Catalanotti, S., Fontana, F. and Lavorante, F. (1984) An Analytical Method to Determine the Optimal Size of a Photovoltaic Plant. Solar Energy, 33, 509-514.
https://doi.org/10.1016/0038-092X(84)90005-7
[100]  Bartoli, B., Cuomo, V., Fontana, F. and Silvestrini, V. (1984) The Design Of photo-Voltaic Plants: An Optimization Procedure. Applied Energy, 18, 37-47.
https://doi.org/10.1016/0306-2619(84)90044-8
[101]  Banco Espírito Santo (2012) International Support Kit of Opportunities. Research Sectorial, Mocamnique.
[102]  EDM (2009) Electricidade de Mocambique. Statistical Reports, 19.
[103]  United Nations (2016) The Sustainable Development Goals Report. New York.
[104]  B.R.-Imprensa Nacional de Mocambique (2011) Boletim da República. Série número 41.
[105]  INTELLICA (2015) Estratégia para o envolvimento do sector privado na electrificacao rural e acesso à energia renovável em Mocambique.
[106]  PNDENR (2009) República de Mocambique, Política de Desenvolvimento de Energias Novas e Renováveis (B.R. no 41, Conselho de Ministros, Resolucao 62/2009).
[107]  Artur, F., Soliano, O. and Mariezcurrena, V. (2011) Estudo de Avaliacao de energias Renováveis em Mocambique. Relatório Final de Consultoria.
[108]  UNRIC (2016) Guia Sobre Desenvolvimento Sustentável. 17 Objectivos para Transformar o Nosso Mundo.
[109]  NIPPON KOEI UK (2012) Estudo do Impacto Sócio-Ambiental. Projecto Cahora Bassa Central Norte.
[110]  FUNAE (2013) Atlas das Energias Renováveis de Mocambique.
[111]  FUNAE (2015) Brochura da Fábrica dos Painéis Solares.
http://www.funae.co.mz/index.php/pt/?option=com_sppagebuilder&view=page&id=15
[112]  FUNAE (2015) Relatório do FUNAE 1997-2014.
[113]  GreenLight. (2015) Avaliacao externa dos projectos de energia renovável.
[114]  Sontake, V.C. and Kamamkar, V.R. (2016) Solar Photovoltaic Water Pumping System—A Comprehensive Review. Renewable and Sustainable Energy Reviews, 59, 1038-1067.
https://doi.org/10.1016/j.rser.2016.01.021
[115]  Campana, P.E., Li, H., Zhang, J., Zhang, R., Liu, J. and Yan, J. (2015) Economic Optimization of Photovoltaic Water Pumping Systems for Irrigation. Energy Conversion and Management, 95, 32-41.
https://doi.org/10.1016/j.enconman.2015.01.066
[116]  República de Mocambique (2015) Programa Quinquenal do Governo 2015-2019. Maputo.

Full-Text

comments powered by Disqus