All Title Author
Keywords Abstract


Fractional Euler Lagrange Equations for Irregular Lagrangian with Holonomic Constraints

DOI: 10.4236/jmp.2018.98105, PP. 1690-1696

Keywords: Fractional Derivatives, Euler-Lagrange Equations, Irregular Lagrangian, Holonomic Constraints

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper the fractional Euler Lagrange equations for irregular Lagrangian with holonomic constraints have been presented. The equations of motion are obtained using fractional Euler Lagrange equations in a similar manner to the usual mechanics. The results of fractional calculus reduce to those obtained from classical calculus (the standard Euler Lagrange equations) when γ0 and α, β are equal unity only. Two problems are considered to demonstrate the application of the formalism.

References

[1]  Atam, A.P. (1990) Introduction to Classical Mechanics. Allyn and Bacon, Needham Heights.
[2]  Goldstein, H. (1980) Classical Mechanics. 2nd Edition, Addison-Wesley, Reading.
[3]  Rabei, E.M. (1999) Turkish Journal of Physics, 23, 1083.
http://adsabs.harvard.edu/abs/2000NCimB.115.1159R
[4]  Serhan, M., Abusini, M. and Rabei, E.M. (2009) Journal of Theoretical Physics, 48, 2731.
https://doi.org/10.1007/s10773-009-0063-5
[5]  Miller, K.S. and Ross, B. (1993) An Introduction to the Fractional Integrals and Derivatives-Theory and Applications. John Willey and Sons, New York.
[6]  Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993) Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Amsterdam.
[7]  Gorenflo, R. and Mainardi, F. (1997) Fractional Calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continuums Mechanics. Springer Verlag, Wien and New York.
[8]  Riewe, F. (1996) Physical Review E, 53, 1890.
https://doi.org/10.1103/PhysRevE.53.1890
[9]  Riewe, F. (1997) Physical Review E, 55, 3581.
https://doi.org/10.1103/PhysRevE.55.3581
[10]  Tarawneh, K.M., Rabei, E.M. and Ghassib, H.B. (2010) Journal of Dynamics Systems and Theories, 8, 59-70.
https://doi.org/10.1080/1726037X.2010.10698578
[11]  Hilfer, R. (2000) Applications of Fractional Calculus in Physics. World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong.
https://doi.org/10.1142/3779
[12]  Malkawi, E., Rousan, A., Rabei, E. and Widyan, H. (2002) Fractional Calculus and Applied Analysis, 5, 155.
[13]  Agrawal, O.P. (1999) An Analytical Scheme for Stochastic Dynamics Systems Containing Fractional Derivatives. ASME Design Engineering Technical Conferences, (7), 243-250.
[14]  Hasan, E.H. (2016) Applied Physics Research, 8, 60.
https://doi.org/10.5539/apr.v8n3p60
[15]  Jarab’ah, O. (2016) Science International Lahore, 28, 3365.
http://www.sci-int.com/Search?catid=71
[16]  Agrawal, O.P. (2001) Journal of Applied Mechanics, 68, 339.
https://doi.org/10.1115/1.1352017
[17]  Agrawal, O.P. (2002) Journal of Mathematical Analysis and Applications, 272, 368.
https://doi.org/10.1016/S0022-247X(02)00180-4
[18]  Igor, M., Sokolove, J.K. and Blumen, A. (2002) Physics Today, American Institute of Physics S-0031-9228-0211-030-1.
[19]  Jarab’ah, O., Nawafleh, K. and Ghassib, H.B. (2013) European Scientific Journal, 9, 70.
http://www.eujournal.org/index.php/esj/article/download/1946/1888

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal