All Title Author
Keywords Abstract

Positioning  2018 

New Strategy of Collaborative Acquisition for Connected GNSS Receivers in Deep Urban Environments

DOI: 10.4236/pos.2018.93003, PP. 23-46

Keywords: Collective Detection, Collaborative Positioning, Connected GNSS Receivers, Deep Urban Environments

Full-Text   Cite this paper   Add to My Lib


Collaborative Positioning (CP) is a better localization technique used to locate a user in challenged environments, which is driven by the increasing presence of cellular phones and mobile devices in urban areas. The basic idea is that the mobile devices can cooperate with each other to improve their ability to determine their position. In this concept, a network of GNSS (Global Navigation Satellite System) receivers can collectively receive available satellite signals, and each receiver can receive signal measurements from other receivers via a communication link. This work shows how to use the Collective Detection (CD) approach to deal with the concept of collaborative or cooperative positioning. Specifically, this paper develops a new strategy allowing a receiver in deep urban environment to locate using the CD approach, while overcoming the implementation complexity problem. The idea consists in applying the CD approach in the case of multiple GNSS receivers to assist a receiver in a difficult situation. A typical case of two connected receivers assisting a receiver in difficulty in a deep urban area shows the effectiveness of this strategy. This strategy is tested with real GNSS signals to analyze its feasibility. The overall gain in complexity can reach up to 46% of what has been achieved in previous works.


[1]  Gonzalo, S., Jose, L., David, J. and Gustavo, L. (2012) Challenges in Indoor Global Navigation Satellite Systems: Unveiling Its Core Features in Signal Processing. IEEE Signal Processing Magazine, 29, 108-131.
[2]  DiEsposti, R. (2007) GPS SV Code Signal Processing and Receiver Design for Simultaneous All-in-View Coherent Signal Acquisition and Navigation Solution Determination. ION NTM, San Diego, CA, USA.
[3]  Axelrad, P., Bradley, B., Donna, J., Mitchell, M., et al. (2011) Collective Detection and Direct Positioning Using Multiple GNSS Satellites. Journal of the Institute of Navigation, 58, 305-321.
[4]  Cheong, J. (2012) Signal Processing and Collective Detection for Locata Positioning System. Ph.D. Thesis, University of New South Wales, Sydney.
[5]  Andrianarison, M., Sahmoudi, M. and Landry, R.Jr. (2015) Cooperative Detection of Multiple GNSS Satellite Signals in GNSS-Challenged Environments. Proceedings of the 28th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2015), Tampa, Florida, USA, 14-18 September 2015, 370-380.
[6]  Omar, A., Sahmoudi, M., Esteves, P., Ries, L., Andrianarison, M. and Landry, R.Jr. (2014) A New Method of Collective Acquisition of Multiple GNSS Satellite Signals in Challenging Environments. Proceedings of the NAVITEC2014, ESA/ESTEC, Noordwijk, The Netherlands, 3-5 December 2014.
[7]  Esteves, P., Sahmoudi, M. and Ries, L. (2014) Collective Detection of Multi-GNSS Signals: Vector-Acquisition Promises Sensitivity and Reliability Improvement. Inside GNSS Magazine.
[8]  Andrianarison, M., Sahmoudi, M. and Landry, R.Jr. (2016) Innovative Techniques for Collective Detection of Multiple GNSS Signals in Challenging Environments. 2016 International Conference on Indoor Positioning and Indoor Navigation, Alcala de Henares, Madrid, Spain, 4-7 October 2016, 1-8.
[9]  Soloviev, A., Dickman, J. and Campbell, J. (2013) MUSTER A Collaborative GNSS Receiver Architecture for Weak Signal Processing. Inside GNSS Magazine.
[10]  Kealy, A., et al. (2011) Collaborative Positioning in GPS-Challenged Environments. Earth on the Edge: Science for a Sustainable Planet: Proceedings of the IAG General Assembly, Melbourne, Australia, 28 June-2 July, 493-500.
[11]  Waters, D.W., Pande, T. and Balakrishnan, J. (2011) Cooperative GNSS Positioning and Navigation. Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, 20-23 September 2011, 3945-3951.
[12]  Grejner-Brzezinska, D.A. and Toth, C.K. (2013) GPS-Challenged Environments: Can Collaborative Navigation Help? Journal of Aeronautics, Astronautics and Aviation, 45, 241-248.
[13]  Lee, J.K., Grejner-Brzezinska, D.A. and Toth, C.K. (2012) Network-Based Collaborative Navigation in GPS-Denied Environment. Journal of Navigation, 65, 445-457.
[14]  Soloviev, A. and Dickman, J. (2013) Collaborative GNSS Signal Processing. Proceedings of the 26th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2013), Nashville, TN, 16-20 September 2013, 135-143.
[15]  Kassas, Z.M. and Humphreys, T.E. (2014) Observability Analysis of Collaborative Opportunistic Navigation with Pseudorange Measurements. IEEE Transactions on Intelligent Transportation Systems, 15, 260-273.
[16]  Andrianarison, M., Sahmoudi, M. and Landry, R.Jr. (2017) Efficient and Innovative Techniques for Collective Acquisition of Weak GNSS Signals. Journal of Computer and Communications, 5, 84-113.
[17]  Garello, R., Lo Presti, L., Corazza, G.E. and Samson, J. (2012) Peer-to-Peer Cooperative Positioning Part I: GNSS Aided Acquisition. Inside GNSS, 55-63.
[18]  Librino, F., Levorato, M. and Zorzi, M. (2014) An Algorithmic Solution for Computing Circle Intersection Areas and Its Applications to Wireless Communications. Wireless Communications and Mobile Computing, 14, 1672-1690.
[19]  Borre, K. (2003) The GPS Easy Suite-Matlab Code for the GPS Newcomer. GPS Solutions, 7, 47-51.


comments powered by Disqus