All Title Author
Keywords Abstract


Abrupt Change in Sahara Precipitation and the Associated Circulation Patterns

DOI: 10.4236/acs.2018.82017, PP. 262-273

Keywords: Drought, Recovery, North Africa, Sahara, Desert, Trend, Climate

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study investigates the changes in inter-annual summer precipitation and the relationship with the atmospheric general circulation in the Sahara Desert occurred in the last 40 years (1971-2010). The results show that the summer precipitation undergone in drought recovery with a strong abrupt change at the end of 20th century. This change in Sahara precipitation is subsequently accompanied with the changes in the atmospheric circulation. The Sahara drought recovery is associated with a significant warming in the tropical and extratropical sea surface temperature, which led to the increase in moisture budget of the tropical African monsoon. The remarkable features such as the strengthening in Arctic high and mid-latitude upper level westerly wind, weakening in subpolar low and upper tropospheric zonal wind over North Africa have shown a distinct relationship with the Sahara precipitation changes.

References

[1]  IPCC (2014) Climate Change 2014: Mitigation of Climate Change.
http://www.ipcc.ch/report/ar5/wg3/
[2]  Rahmstorf, S. (2001) Abrupt Climate Change. In: Encyclopedia of Ocean Sciences, Elsevier, 1-6.
https://doi.org/10.1006/rwos.2001.0269
[3]  Collins, J.A., Govin, A., Mulitza, S., Heslop, D., Zabel, M., Hartmann, J., et al. (2013) Abrupt Shifts of the Sahara-Sahel Boundary during Heinrich Stadials. Climate of the Past, 9, 1181-1191.
https://doi.org/10.5194/cp-9-1181-2013
[4]  Boko, M., Niang, I., Nyong, A., Vogel, C., Githeko, A., Medany, M., Osman-Elasha, B., Tabo, R. and Yanda, P. (2007) Africa. In: Parry, M.L., Canziani, O.F., Palutikof, J.P., Linden, P.J. van der and Hanson, C.E., Eds., 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, 433-467.
[5]  Liebmann, B., Bladé, I., Kiladis, G.N., Carvalho, L.M.V., Senay, G.B., Allured, D., et al. (2012) Seasonality of African Precipitation from 1996 to 2009. Journal of Climate, 25, 4304-4322.
https://doi.org/10.1175/JCLI-D-11-00157.1
[6]  Nicholson, S.E. (2000) The Nature of Rainfall Variability over Africa on Time Scales of Decades to Millenia. Global and Planetary Change, 26, 137-158.
https://doi.org/10.1016/S0921-8181(00)00040-0
[7]  Liu, P., Washington, W.M., Meehl, G.A., Wu, G. and Potter, G.L. (2001) Historical and Future Trends of the Sahara Desert. Geophysical Research Letters, 28, 2683-2686.
https://doi.org/10.1029/2001GL012883
[8]  Kelley, O.A. (2014) Where the Least Rainfall Occurs in the Sahara Desert, the TRMM Radar Reveals a Different Pattern of Rainfall Each Season. Journal of Climate, 27, 6919-6939.
https://doi.org/10.1175/JCLI-D-14-00145.1
[9]  Micheels, A., Eronen, J. and Mosbrugger, V. (2009) The Late Miocene Climate Response to a Modern Sahara Desert. Global and Planetary Change, 67, 193-204.
https://doi.org/10.1016/j.gloplacha.2009.02.005
[10]  Hales, K., Neelin, J.D. and Zeng, N. (2006) Interaction of Vegetation and Atmospheric Dynamical Mechanisms in the Mid-Holocene African Monsoon. Journal of Climate, 19, 4105-4120.
https://doi.org/10.1175/JCLI3833.1
[11]  Joussaume, S., Taylor, K.E., Braconnot, P., Mitchell, J.F.B., Kutzbach, J.E., Harrison, S.P., et al. (1999) Monsoon Changes for 6000 Years Ago: Results of 18 Simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophysical Research Letters, 26, 859-862.
https://doi.org/10.1029/1999GL900126
[12]  Trenberth, K.E. and Josey, S.A. (2007) Observations: Surface and Atmospheric Climate Change. In, Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L., Eds., Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 235-336.
[13]  Trenberth, K.E., Dai, A., Rasmussen, R.M. and Parsons, D.B. (2003) The Changing Character of Precipitation. Bulletin of the American Meteorological Society, 84, 1205-1217.
https://doi.org/10.1175/BAMS-84-9-1205
[14]  Hartmann, D.J., Klein Tank, A.M.G., Rusticucci, M., Alexander, L.V., Bronnimann, S., Charabi, Y.A.-R., et al. (2013) Observations: Atmosphere and Surface. In: Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 159-254.
[15]  Bindoff, N., Stott, P., AchutaRao, K., Allen, M., Gillett, N., Gutzler, D., et al. (2013) Detection and Attribution of Climate Change: From Global to Regional. In: Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 867-952.
[16]  Niang, I., Ruppel, O.C., Abdrabo, M.A., Essel, A., Lennard, C., Padgham, J., et al. (2014) Africa. In: Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D. and Mach, K.J., Eds., Climate Change 2014: Impacts, Adaptation and Vulnerability, Cambridge University Press, Cambridge, 1199-1266.
[17]  Harada, C., Sumi, A. and Ohmori, H. (2003) Seasonal and Year-to-Year Variations of Rainfall in the Sahara Desert Region Based on TRMM PR Data. Geophysical Research Letters, 30, 1288.
https://doi.org/10.1029/2002GL016695
[18]  Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B. and Ziese, M. (2015) GPCC Full Data Reanalysis Version 7.0 at 0.5: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historic Data. Global Precipitation Climatology Centre, 1-13.
[19]  Ahmad, I., Tang, D., Wang, T., Wang, M. and Wagan, B. (2015) Precipitation Trends over Time Using Mann-Kendall and Spearman’s Rho Tests in Swat River Basin, Pakistan. Advances in Meteorology, 2015, 1-15.
https://doi.org/10.1155/2015/431860
[20]  Safari, B. (2012) Trend Analysis of the Mean Annual Temperature in Rwanda during the Last Fifty Two Years. Journal of Environmental Protection, 3, 538-551.
https://doi.org/10.4236/jep.2012.36065
[21]  Nicholson, S.E. (1981) Rainfall and Atmospheric Circulation during Drought Periods and Wetter Years in West Africa. Monthly Weather Review, 109, 2191-2208.
https://doi.org/10.1175/1520-0493(1981)109<2191:RAACDD>2.0.CO;2
[22]  IPCC (2014) Climate Change 2014 Synthesis Report Summary Chapter for Policymakers. IPCC, 31.
[23]  Claussen, M., Brovkin, V., Ganopolski, A., Kubatzki, C. and Petoukhov, V. (2003) Climate Change in Northern Africa: The Past Is Not the Future. Climatic Change, 57, 99-118.
https://doi.org/10.1023/A:1022115604225
[24]  Castaneda, I.S., Mulitza, S., Schefuss, E., Lopes dos Santos, R.A., Sinninghe Damste, J.S. and Schouten, S. (2009) Wet Phases in the Sahara/Sahel Region and Human Migration Patterns in North Africa. Proceedings of the National Academy of Sciences, 106, 20159-20163.
https://doi.org/10.1073/pnas.0905771106
[25]  Foley, J.A., Coe, M.T., Scheffer, M. and Wang, G. (2003) Regime Shifts in the Sahara and Sahel: Interactions between Ecological and Climatic Systems in Northern Africa. Ecosystems, 6, 524-539.
https://doi.org/10.1007/s10021-002-0227-0
[26]  Kuper, R. (2006) After 5000 BC: The Libyan Desert in Transition. Comptes Rendus Palevol, 5, 409-419.
https://doi.org/10.1016/j.crpv.2005.10.013
[27]  Liu, Z., Wang, Y., Gallimore, R., Notaro, M. and Prentice, I.C. (2006) On the Cause of Abrupt Vegetation Collapse in North Africa during the Holocene: Climate Variability vs. Vegetation Feedback. Geophysical Research Letters, 33, L22709.
https://doi.org/10.1029/2006GL028062
[28]  Lézine, A.-M., Hély, C., Grenier, C., Braconnot, P. and Krinner, G. (2011) Sahara and Sahel Vulnerability to Climate Changes, Lessons from Holocene Hydrological Data. Quaternary Science Reviews, 30, 3001-3012.
https://doi.org/10.1016/j.quascirev.2011.07.006
[29]  Schulz, E. (1991) Holocene Environments in the Central Sahara. Hydrobiologia, 214, 359-365.
https://doi.org/10.1007/BF00050971
[30]  Rachmayani, R., Prange, M. and Schulz, M. (2015) North African Vegetation-Precipitation Feedback in Early and Mid-Holocene Climate Simulations with CCSM3-DGVM. Climate of the Past, 11, 175-185.
https://doi.org/10.5194/cp-11-175-2015
[31]  Bubenzer, O. and Reimer, H. (2007) Holocene Climatic Change and Human Settlement between the Central Sahara and the Nile Valley: Archaeological and Geomorphological Results. Geoarchaeology, 22, 607-620.
https://doi.org/10.1002/gea.20176
[32]  Caminade, C. and Terray, L. (2010) Twentieth Century Sahel Rainfall Variability as Simulated by the ARPEGE AGCM, and Future Changes. Climate Dynamics, 35, 75-94.
https://doi.org/10.1007/s00382-009-0545-4
[33]  Hagos, S.M., Cook, K.H., Hagos, S.M. and Cook, K.H. (2008) Ocean Warming and Late-Twentieth-Century Sahel Drought and Recovery. Journal of Climate, 21, 3797-3814.
https://doi.org/10.1175/2008JCLI2055.1
[34]  Dai, A., Lamb, P.J., Trenberth, K.E., Hulme, M., Jones, P.D. and Xie, P. (2004) Comment the Recent Sahel Drought Is Real. International Journal of Climatology, 24, 1323-1331.
https://doi.org/10.1002/joc.1083
[35]  Fettweis, X., Mabille, G., Erpicum, M., Nicolay, S. and van den Broeke, M. (2011) The 1958-2009 Greenland Ice Sheet Surface Melt and the Mid-Tropospheric Atmospheric Circulation. Climate Dynamics, 36, 139-159.
https://doi.org/10.1007/s00382-010-0772-8
[36]  Park, J.Y., Bader, J. and Matei, D. (2015) Northern-Hemispheric Differential Warming Is the Key to Understanding the Discrepancies in the Projected Sahel Rainfall. Nature Communications, 6, 5985.
https://doi.org/10.1038/ncomms6985
[37]  Evan, A.T., Flamant, C., Lavaysse, C., Kocha, C. and Saci, A. (2015) Water Vapor-Forced Greenhouse Warming over the Sahara Desert and the Recent Recovery from the Sahelian Drought. Journal of Climate, 28, 108-123.
https://doi.org/10.1175/JCLI-D-14-00039.1
[38]  Liu, H., Chen, W., Dong, X. and Zhang, X. (2009) Sustainable Agricultural Paradigm of Mountain-Oasis-Ecotone-Desert System in Inland Manasi River Basin, Xinjiang Province, Northwest China. International Conference on Computer and Computing Technologies in Agriculture, Beijing, 14-17 October 2009, 197-207.
https://doi.org/10.1007/978-1-4419-0209-2_22
[39]  Wang, S., Zhang, M., Che, Y., Chen, F. and Qiang, F. (2016) Contribution of Recycled Moisture to Precipitation in Oases of Arid Central Asia: A Stable Isotope Approach. Water Resources Research, 52, 3246-3257.
https://doi.org/10.1002/2015WR018135
[40]  Li, B.F., Chen, Y.N., Shi, X., Chen, Z.S. and Li, W.H. (2013) Temperature and Precipitation Changes in Different Environments in the Arid Region of Northwest China. Theoretical and Applied Climatology, 112, 589-596.
https://doi.org/10.1007/s00704-012-0753-4
[41]  Li, C.-S., Yang, X.-H., Zhang, K.-B., Yu, C.-T. and Ci, L.-J. (2007) Response Characteristics of Precipitation, Soil Moisture and Groundwater Level in Desert-Oasis System. Journal of Beijing Forestry University, 29, 129-135.

Full-Text

comments powered by Disqus