Based on tetradentate metalloligand LCu ([Cu(2,4-pydca)2], 2,4-pydca = pyridine-2,4-dicarboxylate) and lanthanides (Sm3+, Dy3+), two
3d-4fheterometalliccoordination polymers, namely,
{[Sm2 (DMSO)4 (CH3OH) 2][LCu]3·7DMSO·2CH3OH}n 1 and
{[Dy2 (DMSO)3 (CH3OH)][LCu3 (DMSO)]·4DMSO·CH3OH}n 2 (DMSO = dimethyl sulfoxide), have been synthesized and well characterized by elemental analysis, Fourier-transform infrared spectroscopy, thermogravimetric and single-crystal X-ray diffraction analysis. Single-crystal X-ray analysis reveals that both 1 and 2 crystallize in the triclinic crystal system with P-1 space group and possess the 3D framework structures, which are constructed from metalloligands LCu connecting with {Sm2} and {Dy2} clusters, respectively. The 3D structure of 1 has a 6-connected single-nodal topology with the point symbol {49 × 66}, while 2 features a different framework with the point symbol of {412 × 63}. Thermogravimetric analysis exhibits that the skeleton of both 1 and 2 collapse after 350℃. Magnetic properties of 1 and 2 have also been investigated.
References
[1]
Aboshyan-Sorgho, L., Cantuel, M., Petoud, S., Hauser, A. and Piguet, C. (2012) Optical Sensitization and Upconversion in Discrete Polynuclear Chromium-Lanthanide Complexes. Coordination Chemistry Reviews, 256, 1644.
https://doi.org/10.1016/j.ccr.2011.12.013
[2]
Salah, M.B., Vilminot, S., Andre, G., Bouree-Vigneron, F., Richard-Plouet, M., Mhiri, T. and Kurmoo, M.(2005) Nuclear and Magnetic Structures and Magnetic Properties of Co3(OH)2(SO4)2 (H2O)2. Chemistry. Materials, 17, 2612.
https://doi.org/10.1021/cm047790m
[3]
Lee, K.J., Lee, J.H., Jeoung, S. and Moon, H.R. (2017) Transformation of Metal–Organic Frameworks/Coordination Polymers into Functional Nanostructured Materials: Experimental Approaches Based on Mechanistic In-sights. Accounts of Chemical Research, 50, 2684. https://doi.org/10.1021/acs.accounts.7b00259
[4]
Karmakar, A., Samanta, P., Desai, A.V. and Ghosh, S.K. (2017) Guest-Responsive Metal-Organic Frameworks as Scaffolds for Separation and Sensing Applications. Accounts of Chemical Research, 50, 2457.
https://doi.org/10.1021/acs.accounts.7b00151
[5]
Feng, X., Ma, L.F., Liu, L., Wang, L.Y., Song, H.L. and Xie, S.Y. (2013) A Series of Heterometallic Three-Dimensional Frameworks Constructed from Imidazole–Dicarboxylate: Structures, Luminescence, and Magnetic Properties. Crystal Growth & Design, 13, 4469. https://doi.org/10.1021/cg4009587
[6]
Khatua, S., Stoeckli-Evans, H., Harada, T., Kuroda, R. and Bhattacharjee, M. (2006) Helicity Induction through Hydrogen Bonding and Spontaneous Resolution of a Bimetallic Nickel Complex Coordinated to an Octahedral Metalloligand. Inorganic Chemistry, 45, 9619. https://doi.org/10.1021/ic061226r
[7]
Mohapatra, C. and Chandrasekhar, V. (2014) Two-Dimensional Homometallicto a Three Dimensional Heterometallic Coordination Polymer: A Metalloligand Approach. Crystal Growth & Design, 14, 406. https://doi.org/10.1021/cg401698a
[8]
Srivastava, S., Kumar, V. and Gupta, R. (2016) A Carboxylate-Rich Metalloligand and Its Heterometallic Coordination Polymers: Syntheses, Structures, Topologies, and Heterogeneous Catalysis. Crystal Growth & Design, 16, 2874.
https://doi.org/10.1021/acs.cgd.6b00176
[9]
Ma, Y.S., Li, H., Wang, J.J., Bao, S.S., Cao, R., Li, Y.Z. and Zheng, L.M. (2007) Three-Dimensional Lanthanide(III)-Copper(II) Compounds Based on anUnsymmetrical 2-Pyridylphosphonate Ligand: An Experimental and Theoretical Study. Chemistry: A European Journal, 13, 4759. https://doi.org/10.1002/chem.200601786
[10]
Ma, Y.S., Song, Y. and Zheng, L.M. (2008) Nature of the LnIII-CoIImagnetic Interactions in Compounds [Ln2Co3(C5H4NPO3)6]·4H2O with Open-Framework Structures. Inorganic Chemistry Acta, 361, 1363.
https://doi.org/10.1016/j.ica.2007.08.034
[11]
MacLeod, J.M., Lipton-Duffin, J.A., Cui, D., Feyter, S. and Rosei, F. (2015) Substrate Effects in the Supramolecular Assembly of 1,3,5-Benzene Tricarboxylic Acid on Graphite and Graphene. Langmuir, 31, 7016-7024.
https://doi.org/10.1021/la5048886
[12]
Ryu, J.Y., Lee, J.M., Park, Y.J., Nghia, N.V., Lee, M.H. and Lee, J. (2013) A Ruthenium-Iron Bimetallic Supramolecular Cage with D4 Symmetry from a Tetrapyridyl Iron(I) Metalloligand. Organometallics, 32, 7272-7274.
https://doi.org/10.1021/om401145s
[13]
Kobayashi, A., Suzuki, Y., Ohba, T., Ogawa, T., Matsumoto, T., Noro, S., Chang, H. and Kato, M. (2015) Systematic Syntheses and Metalloligand Doping of Flexible Porous Coordination Polymers Composed of a Co(III)-Metalloligand. Inorganic Chemistry, 54, 2522-2535. https://doi.org/10.1021/ic5021302
[14]
Watanabe, A., Kobayashi, A., Saitoh, E., Nagao, Y., Omagari, S., Nakanishi, T., Hasegawa, Y., Sameera, W.M., Yoshida, M. and Kato, M. (2017) Development of Ion-Conductive and Vapoluminescent Porous Coordination Polymers Composed of Ruthenium(II) Metalloligand. Inorganic Chemistry, 56, 3005-3013.
https://doi.org/10.1021/acs.inorgchem.6b03123
[15]
Zhang, S.Q., Han, L., Li, L.N., Cheng, J., Yuan, D.Q. and Luo, J.H. (2013) A Highly Symmetric Metal-Organic Framework Based on a Propeller-Like Ru-Organic Metalloligand for Photocatalysis and Explosives Detection. Crystal Growth & Design, 13, 5466-5472. https://doi.org/10.1021/cg401438j
[16]
Li, K., Zhang, L.Y., Yan, C., Wei, S.C., Pan, M., Zhang, L. and Su, C.Y. (2014) Stepwise Assembly of Pd6(RuL3)8 Nanoscale Rhombododecahedral Metal-Organic Cages via Metalloligand Strategy for Guest Trapping and Protection. Journal of the American Chemical Society, 136, 4456-4459. https://doi.org/10.1021/ja410044r
[17]
Qian, J., Hu, J.C., Zhang, J.F., Yoshikawa, H., Awaga, K. and Zhang, C. (2013) Solvent-Induced Assembly of Octacyanometalates-Based Coordination Polymers with Unique afm1 Topology and Magnetic Properties. Crystal Growth & Design, 13, 5211-5219. https://doi.org/10.1021/cg400909b
[18]
Qian, J., Zhao, H.J., Wei, H.Y., Li, J.H., Zhang, J.F., Yoshikawa, H., Awagac, K. and Zhang, C. (2011) Two 3D Coordination Assemblies with Same Cluster Configuration Showing Different Magnetic Behaviors: A Ferromagnetic {[W(CN)8Co2(DMF)8][NO3]}n and a Paramagnetic {W(CN)8Cu2(py)8}n. CrystEngComm, 13, 517-523.
https://doi.org/10.1039/C0CE00227E
[19]
Li, J.H., Jia, D., Meng, S.C., Zhang, J.F., Cifuentes, M.P., Humphrey, M.G. and Zhang, C. (2015) Tetrazine Chromophore-Based Metal-Organic Frameworks with Unusual Configurations: Synthetic, Structural, Theoretical, Fluorescent, and Nonlinear Optical Studies. Chemistry—A European Journal, 21, 7914-7926.
https://doi.org/10.1002/chem.201404803
[20]
Zhang, J.F., Jia, D., Humphrey, M.G., Meng, S.C., Zaworotko, M.J., Cifuentes, M.P. and Zhang, C. (2016) Ammonium-Crown Ether Supramolecular Cation-Templated Assembly of an Unprecedented Heterobicluster-Metal Coordination Polymer with Enhanced NLO Properties. Chemical Communications, 52, 3797-3800.
[21]
Noro, S., Miyasaka, H., Kitagawa, S., Wada, T., Okubo, T., Yamashita, M. and Mitani, T. (2005) Framework Control by a Metalloligand Having Multicoordination Ability: New Synthetic Approach for Crystal Structures and Magnetic Properties. Inorganic Chemistry, 44, 133-146. https://doi.org/10.1021/ic049550e
[22]
Banerjee, D., Zhang, Z.J., Plonka, A.M., Li, J. and Parise, J.B. (2012) A Calcium Coordination Framework Having Permanent Porosity and High CO2/N2 Selectivity. Crystal Growth & Design, 12, 2162-2165. https://doi.org/10.1021/cg300274n
[23]
Mundwiler, S., Kundig, M., Ortner, K. and Alberto, R. (2004) A New [2 + 1] Mixed Ligand Concept Based on [99(m)Tc(OH2)3(CO)3]+: A Basic Study. Dalton Transactions, 1320-1328. https://doi.org/10.1039/B400220B
[24]
Noro, S., Kitagawa, S., Yamashita, M. and Wada, T. (2002) New Microporous Coordination Polymer Affording Guest-Coordination Sites at Channel Walls. Chemical Communications, 222-223. https://doi.org/10.1039/b108695b
[25]
Liang, Y.C., Cao, R., Hong, M.C., Sun, D.F., Zhao, Y.J., Weng, J.B. and Wang, R.H. (2002) Syntheses and Characterizations of Two Novel Ln(III)-Cu(II) Coordination Polymers Constructed by Pyridine-2,4-Dicarboxylate Ligand. Inorganic Chemistry Communications, 5, 366-368. https://doi.org/10.1016/S1387-7003(02)00385-4
[26]
Chen, Y.M., Gao, Q., Chen, W.Q., Gao, D.D., Li, Y.H., Liu, W. and Li, W. (2015) Heterometallic Sr(II)-M(II) (M = Co, Ni, Zn and Cu) Coordination Polymers: Synthesis, Temperature-Dependent Structural Transformation, and Luminescent and Magnetic Properties. Chemistry—An Asian Journal, 10, 411.
[27]
Zhou, Q., Qian, J. and Zhang, C. (2013) Three Interesting Coordination Compounds Based on Metalloligandand Alkaline-Earth Ions: Syntheses, Structures, Thermal Behaviors and Magnetic Property. Journal of Molecular Structure, 1049, 326.
[28]
Huang, Y.G., Wu, M.Y., Wei, W., Gao, Q., Yuan, D.Q., Jiang, F.L. and Hong, M.C. (2008) Unprecedented Ferromagnetic Interaction in an Erbium(III)-Copper(II) Coordination Polymer. Journal of Molecular Structure, 885, 23-27.
https://doi.org/10.1016/j.molstruc.2007.10.002
John, C.M., Pieter, C.D., Malissa, M.P., Mary, M.F., Jaina, L.L. and Jamie, L.M. (2000) Design of Layered Crystalline Materials Using Coordination Chemistry and Hydrogen Bonds. Journal of the American Chemical Society, 122, 11692.
https://doi.org/10.1021/ja002102v
Tang, Y.Z., Wen, H.R., Cao, Z., Wang, X.W., Huang, S. and Yu, C.L. (2010) A Novel Three Dimensional 3d-4f Heterometallic Coordination Framework with 2,2’-Bipyridine-3-Carboxylate and Oxalate Ligands. Inorganic Chemistry Communications, 13, 924-928.
[33]
Tang, Y.Z., Yang, Y.M., Wang, X-W., Zhang, Q. and Wen, H.R. (2011) Synthesis, Structure and XPS of a Novel Two-Dimensional CuII-EuIII Heterometallic-Organic Framework. Inorganic Chemistry Communications, 14, 613-617.
https://doi.org/10.1016/j.inoche.2011.01.015
[34]
Lipstman, S. and Goldberg, I. (2010) Porphyrin Framework Solids. Hybrid Supramolecular Assembly Modes of Tetrapyridylpor-phyrin and Aqua Nitrates of Lanthanoid Ions. Crystal Growth & Design, 10, 1823-1832.
https://doi.org/10.1021/cg901505m
[35]
Tabacaru, A., Pettinari, C., Timokhin, I., Marchetti, F., Carrasco-Marín, F., Maldonado-Hódar, F.J., Galli, S. and Masciocchi, N. (2013) Enlarging an Isoreticular Family: 3,3’,5,5’-Tetramethyl-4,4’-Bipyrazolato-Based Po-rous Coordination Polymers. Crystal Growth & Design, 13, 3087-3097. https://doi.org/10.1021/cg400495w
[36]
Tang, Y.Y., Cui, M.Y., Guo, W.B., Zhang, S.Y., et al. (2015) Syntheses, Structure, and Magnetic Properties of New 3d-4f Heterometallic Hydroxysulfates Ln2Cu(SO4)2(OH)4 (Ln = Sm, Eu, Tb, or Dy) with a Two-Dimensional Triangle Network. Crystal Growth & Design, 15, 2742-2747. https://doi.org/10.1021/acs.cgd.5b00057
[37]
He, X.X., Cheng, W.W., Lin, Q.F., Dong, Y.Y. and Xu, Y. (2017) Syntheses, Structures, Luminescence, and Magnetic Properties of a Series of Novel Coordination Polymers Constructed by Nanosized [Ln8Fe4] Rings. Crystal Growth & Design, 17, 347-254. https://doi.org/10.1021/acs.cgd.6b01576
[38]
Ralph, A.Z., Christopher, S.W., Hunter, T.C., Kenneth, S.H., Varun, C. and Robert, A.R. (2011) Effect of Inclining Strain on the Crystal Lattice along an Extended Series of Lanthanide HydroxysulfatesLn(OH)SO4(Ln = Pr-Yb, Except Pm). Inorganic Chemistry, 50, 836. https://doi.org/10.1021/ic101350f
[39]
Su, Y.H., Bao, S.S. and Zheng, L.M. (2014) Heterometallic 3d-4f Coordination Polymers Based on 1,4,7-Triazacyclononane-1,4,7-triyltris(methylenephosphonate). Inorganic Chemistry, 53, 6042-6047. https://doi.org/10.1021/ic500356b
[40]
(1997) SMART and SAINT Area Detector Software Package and SAX Area Detector Integration Program Bruker Analytical X-Ray. Madison, WI, USA.
[41]
Sheldrick, G.M. (1996) SADABS, Program for Area Detector Adsorption Correction. Institute for Inorganic Chemistry, University of Gottingen, Germany.
[42]
Sheldrick, G.M. (1997) SHELXL-97, Program for Refinement of Crystal Structures. University of Gottingen, Germany.
[43]
Spek, A.L. (2003) Single-Crystal Structure Validation with the Program PLATON. Journal of Applied Crystallography, 36, 7-13.
https://doi.org/10.1107/S0021889802022112
[44]
Zhang, F.M., Yan, P.F., Zou, X.Y., Zhang, J.W., Hou, G.F. and Li, G.M. (2014) Novel 3D Alkali-Lanthanide Heterometal-Organic Frameworks with Pyrazine-2,3,5,6-Tetracarboxylic Acid: Synthesis, Structure, and Magnetism. Crystal Growth & Design, 14, 2014-2021. https://doi.org/10.1021/cg5001254