All Title Author
Keywords Abstract


Syntheses, Structures and Properties of 3d-4f Heterometallic Coordination Polymers Based on Tetradentate Metalloligand and Lanthanoid Ions

DOI: 10.4236/msce.2018.64016, PP. 163-179

Keywords: Coordination Polymers, {Sm2}/{Dy2} Clusters, Metalloligand, Crystal Structure, Magnetic Property

Full-Text   Cite this paper   Add to My Lib

Abstract:

Based on tetradentate metalloligand LCu ([Cu(2,4-pydca)2], 2,4-pydca = pyridine-2,4-dicarboxylate) and lanthanides (Sm3+, Dy3+), two 3d-4fheterometalliccoordination polymers, namely, {[Sm2 (DMSO)4 (CH3OH) 2][LCu]3·7DMSO·2CH3OH}n 1 and {[Dy2 (DMSO)3 (CH3OH)][LCu3 (DMSO)]·4DMSO·CH3OH}n 2 (DMSO = dimethyl sulfoxide), have been synthesized and well characterized by elemental analysis, Fourier-transform infrared spectroscopy, thermogravimetric and single-crystal X-ray diffraction analysis. Single-crystal X-ray analysis reveals that both 1 and 2 crystallize in the triclinic crystal system with P-1 space group and possess the 3D framework structures, which are constructed from metalloligands LCu connecting with {Sm2} and {Dy2} clusters, respectively. The 3D structure of 1 has a 6-connected single-nodal topology with the point symbol {49 × 66}, while 2 features a different framework with the point symbol of {412 × 63}. Thermogravimetric analysis exhibits that the skeleton of both 1 and 2 collapse after 350℃. Magnetic properties of 1 and 2 have also been investigated.

References

[1]  Aboshyan-Sorgho, L., Cantuel, M., Petoud, S., Hauser, A. and Piguet, C. (2012) Optical Sensitization and Upconversion in Discrete Polynuclear Chromium-Lanthanide Complexes. Coordination Chemistry Reviews, 256, 1644.
https://doi.org/10.1016/j.ccr.2011.12.013
[2]  Salah, M.B., Vilminot, S., Andre, G., Bouree-Vigneron, F., Richard-Plouet, M., Mhiri, T. and Kurmoo, M.(2005) Nuclear and Magnetic Structures and Magnetic Properties of Co3(OH)2(SO4)2 (H2O)2. Chemistry. Materials, 17, 2612.
https://doi.org/10.1021/cm047790m
[3]  Lee, K.J., Lee, J.H., Jeoung, S. and Moon, H.R. (2017) Transformation of Metal–Organic Frameworks/Coordination Polymers into Functional Nanostructured Materials: Experimental Approaches Based on Mechanistic In-sights. Accounts of Chemical Research, 50, 2684.
https://doi.org/10.1021/acs.accounts.7b00259
[4]  Karmakar, A., Samanta, P., Desai, A.V. and Ghosh, S.K. (2017) Guest-Responsive Metal-Organic Frameworks as Scaffolds for Separation and Sensing Applications. Accounts of Chemical Research, 50, 2457.
https://doi.org/10.1021/acs.accounts.7b00151
[5]  Feng, X., Ma, L.F., Liu, L., Wang, L.Y., Song, H.L. and Xie, S.Y. (2013) A Series of Heterometallic Three-Dimensional Frameworks Constructed from Imidazole–Dicarboxylate: Structures, Luminescence, and Magnetic Properties. Crystal Growth & Design, 13, 4469.
https://doi.org/10.1021/cg4009587
[6]  Khatua, S., Stoeckli-Evans, H., Harada, T., Kuroda, R. and Bhattacharjee, M. (2006) Helicity Induction through Hydrogen Bonding and Spontaneous Resolution of a Bimetallic Nickel Complex Coordinated to an Octahedral Metalloligand. Inorganic Chemistry, 45, 9619.
https://doi.org/10.1021/ic061226r
[7]  Mohapatra, C. and Chandrasekhar, V. (2014) Two-Dimensional Homometallicto a Three Dimensional Heterometallic Coordination Polymer: A Metalloligand Approach. Crystal Growth & Design, 14, 406.
https://doi.org/10.1021/cg401698a
[8]  Srivastava, S., Kumar, V. and Gupta, R. (2016) A Carboxylate-Rich Metalloligand and Its Heterometallic Coordination Polymers: Syntheses, Structures, Topologies, and Heterogeneous Catalysis. Crystal Growth & Design, 16, 2874.
https://doi.org/10.1021/acs.cgd.6b00176
[9]  Ma, Y.S., Li, H., Wang, J.J., Bao, S.S., Cao, R., Li, Y.Z. and Zheng, L.M. (2007) Three-Dimensional Lanthanide(III)-Copper(II) Compounds Based on anUnsymmetrical 2-Pyridylphosphonate Ligand: An Experimental and Theoretical Study. Chemistry: A European Journal, 13, 4759.
https://doi.org/10.1002/chem.200601786
[10]  Ma, Y.S., Song, Y. and Zheng, L.M. (2008) Nature of the LnIII-CoIImagnetic Interactions in Compounds [Ln2Co3(C5H4NPO3)6]·4H2O with Open-Framework Structures. Inorganic Chemistry Acta, 361, 1363.
https://doi.org/10.1016/j.ica.2007.08.034
[11]  MacLeod, J.M., Lipton-Duffin, J.A., Cui, D., Feyter, S. and Rosei, F. (2015) Substrate Effects in the Supramolecular Assembly of 1,3,5-Benzene Tricarboxylic Acid on Graphite and Graphene. Langmuir, 31, 7016-7024.
https://doi.org/10.1021/la5048886
[12]  Ryu, J.Y., Lee, J.M., Park, Y.J., Nghia, N.V., Lee, M.H. and Lee, J. (2013) A Ruthenium-Iron Bimetallic Supramolecular Cage with D4 Symmetry from a Tetrapyridyl Iron(I) Metalloligand. Organometallics, 32, 7272-7274.
https://doi.org/10.1021/om401145s
[13]  Kobayashi, A., Suzuki, Y., Ohba, T., Ogawa, T., Matsumoto, T., Noro, S., Chang, H. and Kato, M. (2015) Systematic Syntheses and Metalloligand Doping of Flexible Porous Coordination Polymers Composed of a Co(III)-Metalloligand. Inorganic Chemistry, 54, 2522-2535.
https://doi.org/10.1021/ic5021302
[14]  Watanabe, A., Kobayashi, A., Saitoh, E., Nagao, Y., Omagari, S., Nakanishi, T., Hasegawa, Y., Sameera, W.M., Yoshida, M. and Kato, M. (2017) Development of Ion-Conductive and Vapoluminescent Porous Coordination Polymers Composed of Ruthenium(II) Metalloligand. Inorganic Chemistry, 56, 3005-3013.
https://doi.org/10.1021/acs.inorgchem.6b03123
[15]  Zhang, S.Q., Han, L., Li, L.N., Cheng, J., Yuan, D.Q. and Luo, J.H. (2013) A Highly Symmetric Metal-Organic Framework Based on a Propeller-Like Ru-Organic Metalloligand for Photocatalysis and Explosives Detection. Crystal Growth & Design, 13, 5466-5472.
https://doi.org/10.1021/cg401438j
[16]  Li, K., Zhang, L.Y., Yan, C., Wei, S.C., Pan, M., Zhang, L. and Su, C.Y. (2014) Stepwise Assembly of Pd6(RuL3)8 Nanoscale Rhombododecahedral Metal-Organic Cages via Metalloligand Strategy for Guest Trapping and Protection. Journal of the American Chemical Society, 136, 4456-4459.
https://doi.org/10.1021/ja410044r
[17]  Qian, J., Hu, J.C., Zhang, J.F., Yoshikawa, H., Awaga, K. and Zhang, C. (2013) Solvent-Induced Assembly of Octacyanometalates-Based Coordination Polymers with Unique afm1 Topology and Magnetic Properties. Crystal Growth & Design, 13, 5211-5219.
https://doi.org/10.1021/cg400909b
[18]  Qian, J., Zhao, H.J., Wei, H.Y., Li, J.H., Zhang, J.F., Yoshikawa, H., Awagac, K. and Zhang, C. (2011) Two 3D Coordination Assemblies with Same Cluster Configuration Showing Different Magnetic Behaviors: A Ferromagnetic {[W(CN)8Co2(DMF)8][NO3]}n and a Paramagnetic {W(CN)8Cu2(py)8}n. CrystEngComm, 13, 517-523.
https://doi.org/10.1039/C0CE00227E
[19]  Li, J.H., Jia, D., Meng, S.C., Zhang, J.F., Cifuentes, M.P., Humphrey, M.G. and Zhang, C. (2015) Tetrazine Chromophore-Based Metal-Organic Frameworks with Unusual Configurations: Synthetic, Structural, Theoretical, Fluorescent, and Nonlinear Optical Studies. Chemistry—A European Journal, 21, 7914-7926.
https://doi.org/10.1002/chem.201404803
[20]  Zhang, J.F., Jia, D., Humphrey, M.G., Meng, S.C., Zaworotko, M.J., Cifuentes, M.P. and Zhang, C. (2016) Ammonium-Crown Ether Supramolecular Cation-Templated Assembly of an Unprecedented Heterobicluster-Metal Coordination Polymer with Enhanced NLO Properties. Chemical Communications, 52, 3797-3800.
[21]  Noro, S., Miyasaka, H., Kitagawa, S., Wada, T., Okubo, T., Yamashita, M. and Mitani, T. (2005) Framework Control by a Metalloligand Having Multicoordination Ability: New Synthetic Approach for Crystal Structures and Magnetic Properties. Inorganic Chemistry, 44, 133-146.
https://doi.org/10.1021/ic049550e
[22]  Banerjee, D., Zhang, Z.J., Plonka, A.M., Li, J. and Parise, J.B. (2012) A Calcium Coordination Framework Having Permanent Porosity and High CO2/N2 Selectivity. Crystal Growth & Design, 12, 2162-2165.
https://doi.org/10.1021/cg300274n
[23]  Mundwiler, S., Kundig, M., Ortner, K. and Alberto, R. (2004) A New [2 + 1] Mixed Ligand Concept Based on [99(m)Tc(OH2)3(CO)3]+: A Basic Study. Dalton Transactions, 1320-1328.
https://doi.org/10.1039/B400220B
[24]  Noro, S., Kitagawa, S., Yamashita, M. and Wada, T. (2002) New Microporous Coordination Polymer Affording Guest-Coordination Sites at Channel Walls. Chemical Communications, 222-223.
https://doi.org/10.1039/b108695b
[25]  Liang, Y.C., Cao, R., Hong, M.C., Sun, D.F., Zhao, Y.J., Weng, J.B. and Wang, R.H. (2002) Syntheses and Characterizations of Two Novel Ln(III)-Cu(II) Coordination Polymers Constructed by Pyridine-2,4-Dicarboxylate Ligand. Inorganic Chemistry Communications, 5, 366-368.
https://doi.org/10.1016/S1387-7003(02)00385-4
[26]  Chen, Y.M., Gao, Q., Chen, W.Q., Gao, D.D., Li, Y.H., Liu, W. and Li, W. (2015) Heterometallic Sr(II)-M(II) (M = Co, Ni, Zn and Cu) Coordination Polymers: Synthesis, Temperature-Dependent Structural Transformation, and Luminescent and Magnetic Properties. Chemistry—An Asian Journal, 10, 411.
[27]  Zhou, Q., Qian, J. and Zhang, C. (2013) Three Interesting Coordination Compounds Based on Metalloligandand Alkaline-Earth Ions: Syntheses, Structures, Thermal Behaviors and Magnetic Property. Journal of Molecular Structure, 1049, 326.
[28]  Huang, Y.G., Wu, M.Y., Wei, W., Gao, Q., Yuan, D.Q., Jiang, F.L. and Hong, M.C. (2008) Unprecedented Ferromagnetic Interaction in an Erbium(III)-Copper(II) Coordination Polymer. Journal of Molecular Structure, 885, 23-27.
https://doi.org/10.1016/j.molstruc.2007.10.002
[29]  Huang, Y.G., Wu, M.Y., Lian, F.Y., Jiang, F.L. and Hong, M.C. (2008) Twofold Interpenetration Corrugated Brick Wall Frameworks of 3d-4f Heterometallic Coordination Polymers. Inorganic Chemistry Communications, 11, 840-842.
[30]  John, C.M., Pieter, C.D., Malissa, M.P., Mary, M.F., Jaina, L.L. and Jamie, L.M. (2000) Design of Layered Crystalline Materials Using Coordination Chemistry and Hydrogen Bonds. Journal of the American Chemical Society, 122, 11692.
https://doi.org/10.1021/ja002102v
[31]  Lush, S.F. and Shen, F.M. (2010) Poly[hexaaquahexakis(l-pyridine-2,4-dicarbox- ylato)tricopper(II)-dieuropium(III)]. Acta Crystallographica, E66, m1516-m1517.
[32]  Tang, Y.Z., Wen, H.R., Cao, Z., Wang, X.W., Huang, S. and Yu, C.L. (2010) A Novel Three Dimensional 3d-4f Heterometallic Coordination Framework with 2,2’-Bipyridine-3-Carboxylate and Oxalate Ligands. Inorganic Chemistry Communications, 13, 924-928.
[33]  Tang, Y.Z., Yang, Y.M., Wang, X-W., Zhang, Q. and Wen, H.R. (2011) Synthesis, Structure and XPS of a Novel Two-Dimensional CuII-EuIII Heterometallic-Organic Framework. Inorganic Chemistry Communications, 14, 613-617.
https://doi.org/10.1016/j.inoche.2011.01.015
[34]  Lipstman, S. and Goldberg, I. (2010) Porphyrin Framework Solids. Hybrid Supramolecular Assembly Modes of Tetrapyridylpor-phyrin and Aqua Nitrates of Lanthanoid Ions. Crystal Growth & Design, 10, 1823-1832.
https://doi.org/10.1021/cg901505m
[35]  Tabacaru, A., Pettinari, C., Timokhin, I., Marchetti, F., Carrasco-Marín, F., Maldonado-Hódar, F.J., Galli, S. and Masciocchi, N. (2013) Enlarging an Isoreticular Family: 3,3’,5,5’-Tetramethyl-4,4’-Bipyrazolato-Based Po-rous Coordination Polymers. Crystal Growth & Design, 13, 3087-3097.
https://doi.org/10.1021/cg400495w
[36]  Tang, Y.Y., Cui, M.Y., Guo, W.B., Zhang, S.Y., et al. (2015) Syntheses, Structure, and Magnetic Properties of New 3d-4f Heterometallic Hydroxysulfates Ln2Cu(SO4)2(OH)4 (Ln = Sm, Eu, Tb, or Dy) with a Two-Dimensional Triangle Network. Crystal Growth & Design, 15, 2742-2747.
https://doi.org/10.1021/acs.cgd.5b00057
[37]  He, X.X., Cheng, W.W., Lin, Q.F., Dong, Y.Y. and Xu, Y. (2017) Syntheses, Structures, Luminescence, and Magnetic Properties of a Series of Novel Coordination Polymers Constructed by Nanosized [Ln8Fe4] Rings. Crystal Growth & Design, 17, 347-254.
https://doi.org/10.1021/acs.cgd.6b01576
[38]  Ralph, A.Z., Christopher, S.W., Hunter, T.C., Kenneth, S.H., Varun, C. and Robert, A.R. (2011) Effect of Inclining Strain on the Crystal Lattice along an Extended Series of Lanthanide HydroxysulfatesLn(OH)SO4(Ln = Pr-Yb, Except Pm). Inorganic Chemistry, 50, 836.
https://doi.org/10.1021/ic101350f
[39]  Su, Y.H., Bao, S.S. and Zheng, L.M. (2014) Heterometallic 3d-4f Coordination Polymers Based on 1,4,7-Triazacyclononane-1,4,7-triyltris(methylenephosphonate). Inorganic Chemistry, 53, 6042-6047.
https://doi.org/10.1021/ic500356b
[40]  (1997) SMART and SAINT Area Detector Software Package and SAX Area Detector Integration Program Bruker Analytical X-Ray. Madison, WI, USA.
[41]  Sheldrick, G.M. (1996) SADABS, Program for Area Detector Adsorption Correction. Institute for Inorganic Chemistry, University of Gottingen, Germany.
[42]  Sheldrick, G.M. (1997) SHELXL-97, Program for Refinement of Crystal Structures. University of Gottingen, Germany.
[43]  Spek, A.L. (2003) Single-Crystal Structure Validation with the Program PLATON. Journal of Applied Crystallography, 36, 7-13.
https://doi.org/10.1107/S0021889802022112
[44]  Zhang, F.M., Yan, P.F., Zou, X.Y., Zhang, J.W., Hou, G.F. and Li, G.M. (2014) Novel 3D Alkali-Lanthanide Heterometal-Organic Frameworks with Pyrazine-2,3,5,6-Tetracarboxylic Acid: Synthesis, Structure, and Magnetism. Crystal Growth & Design, 14, 2014-2021.
https://doi.org/10.1021/cg5001254

Full-Text

comments powered by Disqus